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Definitions

# A partition \ of a positive integer n IS a
nonincreasing sequence (A, Ag, ..., A,;,) Of
positive integers whose sum is n. Each \; Is
called a part of \.

o A partition into distinct parts is a partition
whose parts are all distinct.

» p(n) is the number of partitions of n.

® (Q(n) is the number of partitions of n into
distinct parts.




The underlying problem

® Since the functions p(n) and Q(n) have no known elegant closed
formula, we wish to uncover some of their number-theoretic
properties.
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The underlying problem

® Since the functions p(n) and Q(n) have no known elegant closed
formula, we wish to uncover some of their number-theoretic
properties.

® Ramanujan discovered the famous congruence identities

p(bn+4) = 0 (mod 5)
p(fn+5) = 0 (mod7)
p(1ln+6) = 0 (mod 11)

® Similar identities have been found for Q(n). For instance,
Q(5bn+ 1) =0 (mod 4) whenever n is not divisible by 5.

Are there combinatorial explanations for these elegant identities?
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Dyson’s rank

® Freeman Dyson conjectured that there is a combinatorial invariant
that sorts the partitions of 5n + 4 into 5 equal-sized groups, thus
explaining the congruence p(5n +4) = 0 (mod 5).
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Dyson’s rank

® Freeman Dyson conjectured that there is a combinatorial invariant
that sorts the partitions of 5n + 4 into 5 equal-sized groups, thus
explaining the congruence p(5n +4) = 0 (mod 5).

® Dyson defined the rank of a partition A = (Aq,..., \;,) to be
A1 — m. For example, the rank of the following partition is 1:

)\1:5

——
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Combinatorial intepretations

o Atkin and Swinnerton-Dyer: When the
partitions of 5n + 4 are sorted by their rank
modulo 5, the resulting 5 sets all have the

same number of elements!
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Combinatorial intepretations

o Atkin and Swinnerton-Dyer: When the
partitions of 5n + 4 are sorted by their rank
modulo 5, the resulting 5 sets all have the
same number of elements!

» Taken modulo 7, the rank also sorts the
partitions of 7n + 5 Iinto 7 equal-sized groups.

» Failed to explain p(11n +6) =0 (mod 11).
Garvan discovered the crank, which
explained this identity along with many other
congruences.



The rank and Q(n)

® Gordon and Ono: For any positive integer 5, the set of integers n
for which Q(n) is divisible by 27 is dense in the positive integers.
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The rank and Q(n)

® Gordon and Ono: For any positive integer 5, the set of integers n
for which Q(n) is divisible by 27 is dense in the positive integers.

® Can arank or similar combinatorial invariant be used to explain
congruences for Q(n)?

® The rank provides a combinatorial interpretation for ; = 1 and j = 2!

Theorem (M.). Define T'(m, k;n) to be the number of partitions of n into dis-

tinct parts having rank congruentto m (mod k). Then
T0,4;n) =T(1,4;n) =T(2,4;n) =T(3,4;n)

if and only if 24n + 1 has a prime divisor p Z +1 (mod 24) such that the
largest power of p dividing 24n + 1 is p® where e is odd.
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Outline of proof

® Franklin’s Involution ¢:
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® The fixed points of Franklin’s Involution are the pentagonal
partitions, with £(3k + 1)/2 squares:
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Outline of proof

® Unless n = k(3k £ 1)/2, the rank of any partition A of n into distinct
parts differs from that of ¢(\) by 2.
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Outline of proof

® Unless n = k(3k £ 1)/2, the rank of any partition A of n into distinct
parts differs from that of ¢(\) by 2.

® Forn+#k(3k+1)/2,T(0,4;n)=1T(2,4;n) and
T(1,4;n) =T(3,4;n).

® Andrews, Dyson, Hickerson: T'(0,2;n) = T'(1,2;n) if and only if
24n + 1 has a prime divisor p Z +1 (mod 24) such that the largest
power of p dividing 24n + 1 is p® for some odd positive integer e.
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Outline of proof

® Unless n = k(3k £ 1)/2, the rank of any partition A of n into distinct
parts differs from that of ¢(\) by 2.

® Forn+#k(3k+1)/2,T(0,4;n)=1T(2,4;n) and
T(1,4;n) =T(3,4;n).

® Andrews, Dyson, Hickerson: T'(0,2;n) = T'(1,2;n) if and only if
24n + 1 has a prime divisor p Z +1 (mod 24) such that the largest
power of p dividing 24n + 1 is p® for some odd positive integer e.

® ThusT(0,4;n) =T(1,4;n) =T(2,4;n) = T(3,4;n) for such n, and
the set of such n is dense in the integers. Thus Q(n) is nearly
always divisible by 4.
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Generating functions

® Let Q(n,r) denote the number of partitions of n into
distinct parts having rank r, and define

G(Z, Q) — Z Q(n7 T)qun.

AMS/MAA Joint Mathematics Meetings - Washington, DC — p.9/21



Generating functions

® Let Q(n,r) denote the number of partitions of n into
distinct parts having rank r, and define

= ZQ(n,r)z

® One can show that

qs(s—I—l)/Q

—2q%) - (1 — 2¢°)

G(z,q) —1—|—Z 1= 290

for z,q € Cwith |z] <1, |q] < 1.
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(:(z, q) at fourth roots of unity z

Theorem (M.). Let g € C with |g| < 1. Then

Gli,q) — Z g k(3k—|—1)/2_|_Z,L-k—1qk(3k—1)/2
k=1

G(—i,q) _ Z( )k k(3k—|—1)/2_|_z k 1 k(3k 1)/2
k=0 k=1

® G(l,q)=>,"0QMn)¢" =1 +q)(1+¢*)(1+¢*)--- isaweight 0
modular form, in the variable = where ¢ = e*™7.
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(:(z, q) at fourth roots of unity z

Theorem (M.). Let g € C with |g| < 1. Then

Gli,q) — Zk k(3k+1)/2 Zik—lqk(?)k—l)ﬂ

G(—i,q) _ Z( )k k(3k—|—1)/2_|_z k 1 k(3k 1)/2
k=0 k=1

® G(l,q)=>,"0QMn)¢" =1 +q)(1+¢*)(1+¢*)--- isaweight 0
modular form, in the variable = where ¢ = e*™7.

® G(-1,9)=>.",(T(n;0,2) —T(n;1,2))¢™ has been studied in
depth by Andrews, Dyson, and Hickerson.
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A new false theta function (or two)

® |t follows that

Z k(6k+1)3 Zik—lq(Gk—l)z
k=1

and
qG(—i,q24) _ Z k (6k—|—1 + Z 6k 1)*
k=0 k=1
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A new false theta function (or two)

® |t follows that

Z k(6k+1)3 Zik—lq(Gk—l)z
k=1

and

qG(—i,q24) _ Z( k (6k—|—1 4 Z 6k 1)
k=0 k=1

® Not true theta functions, but they resemble theta functions in the
sense that their coefficients are roots of unity and are 0 whenever
the exponent of ¢ is not a perfect square. Such functions are

known as false theta functions.
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More generating functions

® Let p(n,r) denote the number of partitions of n having rank
r, and define

R(z,q) = Z p(n,r)z"q".
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More generating functions

® Let p(n,r) denote the number of partitions of n having rank
r, and define
— Zp(na T)Z

® One can show that

’I’L2

R(=9) ‘“an 11—zq N1 — 2 1gF)

for z,q € C with |z| <1,
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More generating functions

® Let p(n,r) denote the number of partitions of n having rank
r, and define
— Zp(na T)Z

® One can show that

’I’L2

o _1+2Hk 1 1—Zq (L —21g")

for z,q € C with |z| <1,

® R(—1,q) is one of Ramanujan’s famous “mock theta
functions”.
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The relation betweenG and R

Theorem (M.). We have

1 —1 1+

R(i,1/q) = R(~i,1/q) = ——G(i,q) + ——G(~4,q)




The relation betweenG and R

Theorem (M.). We have

. . 1—7 . 141 .
R(i,1/q) = R(~i,1/q) = ——G(i,q) + ——G(~4,q)
or alternatively,
qR(i,q—QZL) _ Z(_l)n (q(12n+1)2 _|_q(12n+5)2 _|_q(12n+7)2 _|_q(12n—}—11)2)
n=0

= g+ q25 i q49 i q121 . q169

_ 289 _ 361 _ 529 | 625 |
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The relation betweenG and R

Theorem (M.). We have

. . 1—7 . 141 .
R(i,1/q) = R(~i,1/q) = ——G(i,q) + ——G(~4,q)
or alternatively,
qR(i,q—QZL) _ Z(_l)n (q(12n+1)2 _|_q(12n+5)2 _|_q(12n+7)2 _|_q(12n—}—11)2)
n=0

= q i q25 i q49 i q121 . q169

_ 289 _ 361 _ 529 | 625 4
® The analytic behavior of the false theta functions G(+1, q) gives the
behavior of R(+1, q) for g outside the unit disk!

AMS/MAA Joint Mathematics Meetings - Washington, DC — p.13/21



Relation to modular forms

o Bringmann and Ono: If z # 1 Is a root of unity,
the function R(z, q) is the “holomorphic part”
of a weight 1/2 harmonic Maass form.
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naturally within the theory of automorphic
forms.




Relation to modular forms

o Bringmann and Ono: If z # 1 Is a root of unity,
the function R(z, q) is the “holomorphic part”
of a weight 1/2 harmonic Maass form.

» Therefore, the functions G(41,¢ ') appear
naturally within the theory of automorphic
forms.

» What about G(w, q), and G(w, ¢ '), for other
roots of unity w?




Relating G(w, ¢) to modular forms

® Define the series

D(w;q) = (1 4+w)G(w;q) + (1 —w)G(—w; q).




Relating G(w, ¢) to modular forms

® Define the series
D(w;q) = (1 +w)G(w; q) + (1 — w)G(—w; q).

® For roots of unity ¢ # 1, the following is a weight 0 modular form.

n(¢; ) —q%Ill—Cq (1-¢7'") = 02 (Cq @)oo (¢ 01 @)
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Relating G(w, ¢) to modular forms

® Define the series
D(w;q) = (1 +w)G(w; q) + (1 — w)G(—w; q).

® For roots of unity ¢ # 1, the following is a weight 0 modular form.

n(G) = a7 [ =¢a) 1 =¢"0") = 472 (Cq @)oo (¢ D)o
n=1
Theorem (M., Ono). We have

Lz. 1. .\ _ 4. n(27)"
PGP =4 e

is a weight 1 modular form for roots of unity  # =£1.
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The function @(w, q)

® Define @(w, q) = G(w,q1'). Formal manipulation yields

G(w,q) = Z (Eu_—ul)_' i .

= 4 q)n
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The function @(w, q)

® Define @(w, q) = G(w,q1'). Formal manipulation yields

G(w,q) = Z (Eu_—ul)_' i .

= 4 q)n

® This is not a well-defined ¢-series, but we can fix this by

considering Gy (w, q) =S¢ _, ((w__“i;,lq)):.
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The function @(w, q)

® Define @(w, q) = G(w,q1'). Formal manipulation yields

é\(wv Q) — Z (__ul)_. )n

= (W g)n

® This is not a well-defined ¢-series, but we can fix this by

considering Gy (w, q) =S¢ _, ((w__“i;,lq)):.

Theorem (M., Ono). Suppose that —w ! = 1 is an mth primitive root of unity.
f0 < r < m, then lim,,_, oo Gipntrr (w; q) is a well defined g-series and
satisfies

A ~ (—w " —1 1

lim Gopar(w;q) = lim G (w;q) + .
At Grmntr (w3 0) = i, Gimn w3 0) w+l (w0 'g )
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Example: The case-w ! = —1

Gi(liq) = - - ~-¢" - -~ --¢—

Gs(1;9) = —q—¢*—2¢>—2¢* —3¢° —4¢% —5¢" — 6¢° — 8¢° — - --
Gs(l;q) = —q—¢°—2¢° —2¢* —4¢° —5¢° —7¢" —9¢® —13¢° — - --
Gr(liq) = —q—q>—2¢° —2¢" —4¢° — 5¢° — 8¢" — 10¢® — 15¢° — - --
Go(liq) = —q—q¢*—2¢° —2¢" —4¢° —5¢° — 8¢" — 10¢® — 16¢° — - - -
and

Go(liq) = 14+ +2¢" +2¢° +3¢° +3¢" +4¢° +4¢° + - --
@4(1;@ = 14+¢°+¢°+3¢" +3¢° +5¢° +6¢" +9¢° +10¢° + - - -
Go(liq) = 14+¢*+¢>+3¢*+3¢° +6¢°+7¢" +11¢5 + 13¢° + - -
Gs(l;q) = 14+¢*+¢°+3¢*+3¢° +6¢°+7¢" +12¢5 + 14¢° + - -
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Relating G(w, q) to modular forms

® For —w~! a primitive mth root of unity, it now makes sense to
define the ¢-series

G(w,q) = im Gumn(w;q).

n—oo
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Relating G(w, q) to modular forms

® For —w~! a primitive mth root of unity, it now makes sense to
define the ¢-series
G(w,q) = im Gumn(w;q).

® Consider a twist of the third-order mock theta function of
Ramanujan:

2

P(w,q) =) Ly

- n2
= (66)n
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Relating G(w, q) to modular forms

® For —w~! a primitive mth root of unity, it now makes sense to
define the ¢-series
G(w,q) = im Gumn(w;q).

® Consider a twist of the third-order mock theta function of
Ramanujan:

2

Y(w,q) = Ly

- n2
= (66)n

® Also define D(w,q) = (1+w1)G(w, ¢) + (1 —w2)(¢(—w?, q) — 1).
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Relating G(w, q) to modular forms

Theorem (Folsom). Let —w L # 1 be a primitive mth root of unity. Then
q_l/lzD(w, q)D(w™1, q) is the weight 1 modular form

n*(¢*
2

~1/12D (0. N\ Dlw—ta) —
q D(w,q)D(w™ q) 72(0)

)% (w?, q)
n3(w?, ¢?)

where n(w, ¢) = ¢*/1%(Wg; @)oo (WG @) o
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Relating G(w, q) to modular forms

Theorem (Folsom). Let —w L # 1 be a primitive mth root of unity. Then
q_l/lzD(w, q)D(w™1, q) is the weight 1 modular form

2
¢ 2 D(w,q)D(w™q) =

n*(q
2

)% (w?, q)
n*(q)n?

(w?, q?)

where n(w, ¢) = ¢*/1%(Wg; @)oo (WG @) o

® Thus G and G appear naturally within the theory of automorphic
forms!
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Observations and Future Work

® The rank fails to explain the divisibility of Q(n) by higher
powers of 2. Is there a generalization of the rank that can be
used to divide the partitions of (n) into m equal-sized
groups whenever Q(n) is divisible by m for any positive

Integer m?
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Observations and Future Work

® The rank fails to explain the divisibility of Q(n) by higher
powers of 2. Is there a generalization of the rank that can be
used to divide the partitions of (n) into m equal-sized
groups whenever Q(n) is divisible by m for any positive
Integer m?

® Are there other partition functions for which we can obtain
congruences via the rank or related combinatorial
Invariants?

We have seen that G(z, q) and R(z, q) are related at z = +:.
Are these the only values of z for which they are related in
some way?
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