
On the distribution of arithmetic sequences
in the Collatz graph

Keenan Monks, Harvard University
Ken G. Monks, University of Scranton

Ken M. Monks, Colorado State University
Maria Monks, UC Berkeley



The 3x + 1 conjecture (Collatz conjecture)

I Famous open problem stated in 1929 by Collatz.

I Define C : N→ N by C (x) =

{
x/2 x is even

3x + 1 x is odd
.

I What is the long-term behaviour of C as a discrete dynamical
system?

I Example:

9→ 28→ 14→ 7→ 22→ 11→ 34→ 17→ 52→
26→ 13→ 40→ 20→ 10→ 5→ 16→ 8→ 4→ 2→ 1→
4→ 2→ 1 · · ·

I Collatz Conjecture: The C -orbit x ,C (x),C (C (x)), . . . of
every positive integer x eventually enters the cycle containing
1.

I Can also use T (x) =

{
x/2 x is even
3x+1
2 x is odd

.
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The Collatz graph G
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Two smaller conjectures

I The Nontrivial Cycles conjecture: There are no T -cycles of
positive integers other than the cycle 1, 2.

I The Divergent Orbits conjecture: The T -orbit of every
positive integer is bounded and hence eventually cyclic.

I Together, these suffice to prove the Collatz conjecture.

I Both still unsolved.
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Starting point: sufficiency of arithmetic progressions

I Two positive integers merge if their orbits eventually meet.

I A set of S positive integers is sufficient if every positive
integer merges with an element of S .

I Theorem. (K. M. Monks, 2006.) Every arithmetic sequence
is sufficient.

I In fact, Monks shows that every positive integer relatively
prime to 3 can be back-traced to an element of a given
arithmetic sequence.

I Every integer congruent to 0 mod 3 forward-traces to an
integer relatively prime to 3, at which point the orbit contains
no more multiples of 3.
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The Collatz graph G
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The pruned Collatz graph G̃
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Natural questions arising from the sufficiency of
arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in N?

2. For a given x ∈ N \ 3N, how “close” is the nearest element of
{a + bN}N≥0 that we can back-trace to?

3. Starting from x = 1, can we chain these short back-tracing
paths together to find which integers are in an infinite
back-tracing path from 1?

4. In which infinite back-tracing paths does a given arithmetic
sequence {a + bN} occur?
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Attempting the first question



A family of sparse sufficient sets

Proposition (Monks, Monks, Monks, M.)

For any function f : N→ N and any positive integers a and b,

{2f (n)(a + bn) | n ∈ N}

is a sufficient set.

Proof.
Any positive integer x merges with some number of the form
a + bN. Then 2f (N)(a + bN), which maps to a + bN after f (N)
iterations of T , also merges with x .

Corollary

For any fixed a and b, the sequence (a + bn) · 2n is a sufficient set
with asymptotic density zero in the positive integers.



Natural questions arising from the sufficiency of
arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in N?

Yes!

2. For a given x ∈ N \ 3N, how “close” is the nearest element of
{a + bN}N≥0 that we can back-trace to?

3. Starting from x = 1, can we chain these short back-tracing
paths together to find which integers are in an infinite
back-tracing path from 1?

4. In which infinite back-tracing paths does a given arithmetic
sequence {a + bN} occur?
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Efficient back-tracing

I Define the length of a finite back-tracing path to be the
number of red arrows in the path.

I Want to find the shortest back-tracing path to an element of
the arithmetic sequence a mod b for various a and b.

I Consider three cases: when b is a power of 2, a power of 3, or
relatively prime to 2 and 3.
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Efficient back-tracing

Proposition

Let b ∈ N with gcd(b, 6) = 1, and let a < b be a nonnegative
integer. Let e be the order of 3

2 modulo b. Then any x ∈ N \ 3N
can be back-traced to an integer congruent to a mod b via a path
of length at most (b − 1)e.

Proposition

Let n ≥ 1 and a < 2n be nonnegative integers. Then any
x ∈ N \ 3N can be back-traced to an integer congruent to a mod
2n using a path of length at most blog2 a + 1c.
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Efficient back-tracing

Proposition

Let m ≥ 1 and a < 3m be nonnegative integers. Then any
x ∈ N \ 3N can be back-traced to infinitely many odd elements of
a + 3mN via an admissible sequence of length 1.

Working mod 3m is particularly nice because 2 is a primitive root
mod 3m. What about when 2 is a primitive root mod b?

Proposition

Let b ∈ N with gcd(b, 6) = 1 such that 2 is a primitive root mod
b. Let a be such that 0 ≤ a ≤ b and gcd(a, b) = 1. From any
x ∈ N \ 3N, there exists a back-tracing path of length at most 1 to
an integer y ∈ N \ 3N with y ≡ a (mod b).
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{a + bN}N≥0 that we can back-trace to?

Pretty close, depending on b.

3. Starting from x = 1, can we chain these short back-tracing
paths together to find which integers are in an infinite
back-tracing path from 1?

4. In which infinite back-tracing paths does a given arithmetic
sequence {a + bN} occur?
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Attempting the third question



Infinite back-tracing

I An infinite back-tracing sequence is a sequence of the form

x0, x1, x2, . . .

for which T (xi ) = xi−1 for all i ≥ 1.

I An infinite back-tracing parity vector is the binary sequence
formed by taking an infinite back-tracing sequence mod 2.

I We think of an infinite back-tracing parity vector as an
element of Z2, the ring of 2-adic integers.

I Some are simple to describe: those that end in 0. These are
the positive integers N ⊂ Z2.

I When there are infinitely many 1’s, they are much harder to
describe.
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Uniqueness of infinite back-tracing vectors

Proposition

Let x ∈ N \ 3N, and suppose v is a back-tracing parity vector for x
containing infinitely many 1’s. If v is also a back-tracing parity
vector for y , then x = y.

I Idea of proof: The first m occurrences of 1 in v determine the
congruence class of x mod 3m.

I In the forward direction, the first n digits of the T -orbit of x
taken mod 2 determine the congruence class of x mod 2n.

I (Bernstein, 1994.) This gives a map Φ : Z2 → Z2 that sends
v to the unique 2-adic whose T -orbit, taken mod 2, is v .

I Similarly, we can define a map Ψ : Z2 \ N → Z3 that sends v
to the unique 3-adic having v as an infinite back-tracing
parity vector.
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What are the back-tracing parity vectors starting
from positive integers?

Proposition

Every back-tracing parity vector of a positive integer x, considered
as a 2-adic integer, is either:

(a) a positive integer (ends in 0),

(b) immediately periodic (its binary expansion has the form
v0 . . . vk where each vi ∈ {0, 1}), or

(c) irrational.

Can we write down an irrational one?
The best we can do is a recursive construction, such as the greedy
back-tracing vector that follows red whenever possible. Even this is
hard to describe explicitly.
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Another look at G̃
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Natural questions arising from the sufficiency of
arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in N?
Yes!

2. For a given x ∈ N \ 3N, how “close” is the nearest element of
{a + bN}N≥0 that we can back-trace to?
Pretty close, depending on b.

3. Starting from x = 1, can we chain these short back-tracing
paths together to find which integers are in an infinite
back-tracing path from 1?

This turns out to be very hard to find explicitly.

4. In which infinite back-tracing paths does a given arithmetic
sequence {a + bN} occur?
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Attempting the fourth question



Strong sufficiency in the reverse direction

Theorem
Let x ∈ N \ 3N. Then every infinite back-tracing sequence from x
contains an element congruent to 2 mod 9.

We say that the set of positive integers congruent to 2 mod 9 is
strongly sufficient in the reverse direction.
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Proof by picture: the pruned Collatz graph mod 9.
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Strong sufficiency in the forward direction

I A similar argument shows that 2 mod 9 is strongly sufficient
in the forward direction: the T -orbit of every positive integer
contains an element congruent to 2 mod 9!

I A set S is strongly sufficient in the forward direction if every
divergent orbit and nontrivial cycle of positive integers
intersects S .

I A set S is strongly sufficient in the reverse direction if every
infinite back-tracing sequence containing infinitely many odd
elements, other than 1, 2, intersects S .

I S is strongly sufficient if it is strongly sufficient in both
directions.

I How this helps: Suppose we can show that, for instance, the
set of integers congruent to 1 mod 2n is strongly sufficient for
every n. Then the nontrivial cycles conjecture is true!
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The graphs Γk

Definition
For k ∈ N, define Γk to be the two-colored directed graph on Z/kZ
having a black arrow from r to s if and only if ∃x , y ∈ N with

x ≡ r and y ≡ s (mod k)

with x/2 = y , and a red arrow from r to s if there are such an x
and y with (3x + 1)/2 = y .



Example: Γ9
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Example: Γ7
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A criterion for strong sufficiency

Theorem
Let n ∈ N, and let a1, . . . , ak be k distinct residues mod n.

I Let Γ′n be the vertex minor of Γn formed by deleting the nodes
labeled a1, . . . , ak and all arrows connected to them.

I Let Γ′′n be the graph formed from Γ′n by deleting any edge
which is not contained in any cycle of Γ′n.

If Γ′′n is a disjoint union of cycles and isolated vertices, and each of
the cycles have length less than 630, 138, 897, then the set

a1, . . . , ak mod n

is strongly sufficient.
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A list of strongly sufficient sets

0 mod 2 1, 4 mod 9 1, 2, 6 mod 7 3, 4, 7 mod 10 2, 7, 8 mod 11 4, 5, 12 mod 14
1 mod 2 1, 8 mod 9 0, 1, 3 mod 8 3, 6, 7 mod 10 3, 4, 5 mod 11 4, 6, 11 mod 14
1 mod 3 4, 5 mod 9 0, 1, 6 mod 8 3, 7, 8 mod 10 3, 4, 8 mod 11 4, 11, 12 mod 14
2 mod 3 4, 7 mod 9 2, 4, 7 mod 8 4, 5, 7 mod 10 3, 4, 9 mod 11 6, 7, 8 mod 14
1 mod 4 5, 8 mod 9 2, 5, 7 mod 8 5, 6, 7 mod 10 3, 4, 10 mod 11 6, 8, 9 mod 14
2 mod 4 7, 8 mod 9 0, 1, 4 mod 10 5, 7, 8 mod 10 3, 6, 10 mod 11 7, 8, 12 mod 14
2 mod 6 4, 7 mod 11 0, 1, 6 mod 10 0, 1, 5 mod 11 1, 7, 10 mod 12 8, 9, 12 mod 14
2 mod 9 5, 6 mod 11 0, 1, 8 mod 10 0, 1, 8 mod 11 1, 8, 11 mod 12 1, 5, 7 mod 15

0, 3 mod 4 6, 8 mod 11 0, 2, 4 mod 10 0, 1, 9 mod 11 2, 4, 11 mod 12 1, 5, 11 mod 15
0, 1 mod 5 6, 9 mod 11 0, 2, 6 mod 10 0, 2, 5 mod 11 4, 7, 10 mod 12 1, 5, 13 mod 15
0, 2 mod 5 1, 5 mod 12 0, 2, 7 mod 10 0, 2, 8 mod 11 1, 3, 4 mod 13 1, 5, 14 mod 15
1, 3 mod 5 2, 5 mod 12 0, 2, 8 mod 10 0, 4, 5 mod 11 1, 4, 6 mod 13 1, 7, 8 mod 15
2, 3 mod 5 2, 8 mod 12 0, 4, 7 mod 10 0, 4, 8 mod 11 1, 8, 11 mod 13 1, 8, 13 mod 15
1, 4 mod 6 2, 10 mod 12 0, 6, 7 mod 10 0, 4, 9 mod 11 2, 3, 7 mod 13 1, 8, 14 mod 15
1, 5 mod 6 4, 5 mod 12 0, 7, 8 mod 10 1, 2, 7 mod 11 2, 6, 7 mod 13 1, 10, 11 mod 15
4, 5 mod 6 5, 8 mod 12 1, 3, 4 mod 10 1, 3, 5 mod 11 3, 4, 9 mod 13 1, 10, 13 mod 15
2, 3 mod 7 7, 8 mod 12 1, 3, 6 mod 10 1, 3, 8 mod 11 3, 4, 10 mod 13 2, 5, 7 mod 15
2, 5 mod 7 8, 11 mod 15 1, 3, 8 mod 10 1, 3, 9 mod 11 3, 7, 10 mod 13 2, 5, 11 mod 15
3, 4 mod 7 1, 8 mod 18 1, 4, 5 mod 10 1, 3, 10 mod 11 3, 10, 11 mod 13 2, 5, 13 mod 15
4, 5 mod 7 2, 8 mod 18 1, 5, 6 mod 10 1, 5, 7 mod 11 4, 6, 9 mod 13 2, 5, 14 mod 15
4, 6 mod 7 2, 11 mod 18 1, 5, 8 mod 10 1, 7, 8 mod 11 4, 6, 10 mod 13 2, 7, 8 mod 15
1, 4 mod 8 7, 8 mod 18 2, 3, 4 mod 10 1, 7, 9 mod 11 4, 8, 9 mod 13 2, 7, 10 mod 15
1, 5 mod 8 8, 10 mod 18 2, 3, 6 mod 10 2, 3, 5 mod 11 6, 7, 10 mod 13 2, 8, 13 mod 15
2, 3 mod 8 8, 14 mod 18 2, 3, 7 mod 10 2, 3, 7 mod 11 6, 10, 11 mod 13 2, 8, 14 mod 15
2, 6 mod 8 10, 11 mod 18 2, 3, 8 mod 10 2, 3, 8 mod 11 7, 8, 9 mod 13 2, 10, 11 mod 15
3, 4 mod 8 5, 11 mod 21 2, 4, 5 mod 10 2, 3, 9 mod 11 8, 9, 11 mod 13 2, 10, 13 mod 15
3, 5 mod 8 0, 1, 3 mod 7 2, 5, 6 mod 10 2, 3, 10 mod 11 8, 10, 11 mod 13 2, 10, 14 mod 15
4, 6 mod 8 0, 1, 5 mod 7 2, 5, 7 mod 10 2, 5, 7 mod 11 3, 4, 10 mod 14 4, 5, 11 mod 15
5, 6 mod 8 0, 1, 6 mod 7 2, 5, 8 mod 10 2, 6, 7 mod 11 4, 5, 6 mod 14 4, 10, 11 mod 15



Natural questions arising from the sufficiency of
arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in N?
Yes!

2. For a given x ∈ N \ 3N, how “close” is the nearest element of
{a + bN}N≥0 that we can back-trace to?
Pretty close, depending on b.

3. Starting from x = 1, can we chain these short back-tracing
paths together to find which integers are in an infinite
back-tracing path from 1?
This turns out to be very hard to find explicitly.

4. In which infinite back-tracing paths does a given arithmetic
sequence {a + bN} occur?

We’re still working on a general answer, but we know that
many (such as 2 mod 9) occur in all of them!
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Question 5.

Which deeper structure theorems about
T -orbits can be used to improve on these
results?



Background on percentage of 1’s in a T -orbit

I Theorem. (Eliahou, 1993.) If a T -cycle of positive integers
of length n contains r odd positive integers (and n − r even
positive integers), and has minimal element m and maximal
element M, then

ln(2)

ln
(
3 + 1

m

) ≤ r

n
≤ ln(2)

ln
(
3 + 1

M

)

I Theorem. (Lagarias, 1985.) Similarly, the percentage of 1’s
in any divergent orbit is at least ln(2)/ ln(3) ≈ .6309.

I With these facts, we can show 20 mod 27 is strongly sufficient
in the forward direction.
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Question 5.

Which deeper structure theorems about
T -orbits can be used to improve on these
results?

I The percentage of 1’s in any divergent orbit or nontrivial
cycle is at least 63%. This can be used to obtain more
strongly sufficient sets.



Background on T as a 2-adic dynamical system

I Extend T to a map Z2 → Z2 where Z2 is the ring of 2-adic
integers. Here, 3 = 110000 · · · .

I Parity vector function: Φ−1 : Z2 → Z2 sends x to the
T -orbit of x taken mod 2.

I Shift map: σ : Z2 → Z2 sends a0a1a2a3 . . . to a1a2a3 . . ..

I Theorem. (Bernstein, Lagarias.) Inverse parity vector
function

Φ : Z2 → Z2

is well defined, and

T = Φ ◦ σ ◦ Φ−1.
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Background on T as a 2-adic dynamical system

I In 1969, Hedlund classified the continuous endomorphisms of
σ: functions f : Z2 → Z2 satisfying f ◦ σ = σ ◦ f .

I In particular, the only two automorphisms (bijective
endomorphisms) are the identity map and the bit complement
map V .

I V (100100100 . . .) = 011011011 . . ..

I In 2004, K. G. Monks and J. Yasinski used V to construct the
unique nontrivial autoconjugacy of T :

Ω := Φ ◦ V ◦ Φ−1.
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The autoconjugacy Ω

Z2
T //

Φ−1
��

Ω

��

Z2

Φ−1
��

Ω

��

Z2
σ //

V
��

Z2

V
��

Z2
σ //

Φ
��

Z2

Φ
��

Z2
T // Z2



Working with Ω

I Ω is solenoidal, that is, it induces a permutation on Z/2nZ for
all n.

I Ω is also an involution that pairs evens with odds.

I Example:

Ω(110 · · · ) = Φ ◦ V ◦ Φ−1(110 · · · )
= Φ ◦ V (110 · · · )
= Φ(001 · · · )
= 001 · · ·

I We say that, mod 8, Ω(3) = 4.
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Self-duality in Γ2n

I Define the color dual of a graph Γk to be the graph formed by
replacing every red arrow with a black arrow and vice versa.

I We say a graph is self-color-dual if it is isomorphic to its color
dual up to a re-labeling of the vertices.

Theorem
For any n ≥ 1, the graph Γ2n is self-color-dual.

Idea of proof: if we replace each label a with Ω(a) mod 2n, we get
the color dual of Γ2n .
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Example: Γ8
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Hedlund’s other endomorphisms

I Discrete derivative map: D : Z2 → Z2 by
D(a0a1a2 . . .) = d0d1d2 . . . where di = |ai − ai+1| for all i .

I Then
R := Φ ◦ D ◦ Φ−1

is an endomorphism of T .

I (M., 2009.) R is a two-to-one map, and R(Ω(x)) = R(x) for
all x .

I Can use R to “fold” Γ2n+1 onto Γ2n by identifying Ω-pairs.
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The endomorphism R
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Folding Γ2n+1 onto Γ2n
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Folding Γ8 onto Γ4
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Folding Γ8 onto Γ4
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Question 5.

Which deeper structure theorems about
T -orbits can be used to improve on these
results?

I The percentage of 1’s in any divergent orbit or nontrivial
cycle is at least 63%. This can be used to obtain more
strongly sufficient sets.

I The structure of T as a 2-adic dynamical system can be
used to obtain properties of the graphs Γ2n .
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Future work

I In 2010, K. Monks and B. Kraft studied the continuous
endomorphisms of T that come from Hedlund’s other
endomorphisms. Can we use these to obtain further folding
results?

I How can we make use of self-duality and folding mod powers
of 2 to obtain more strongly sufficient sets?

I Are there other graph-theoretic techniques that would be
useful?

I Can we find an irrational infinite back-tracing parity vector
explicitly, say using algebraic properties?



Future work

I In 2010, K. Monks and B. Kraft studied the continuous
endomorphisms of T that come from Hedlund’s other
endomorphisms. Can we use these to obtain further folding
results?

I How can we make use of self-duality and folding mod powers
of 2 to obtain more strongly sufficient sets?

I Are there other graph-theoretic techniques that would be
useful?

I Can we find an irrational infinite back-tracing parity vector
explicitly, say using algebraic properties?



Future work

I In 2010, K. Monks and B. Kraft studied the continuous
endomorphisms of T that come from Hedlund’s other
endomorphisms. Can we use these to obtain further folding
results?

I How can we make use of self-duality and folding mod powers
of 2 to obtain more strongly sufficient sets?

I Are there other graph-theoretic techniques that would be
useful?

I Can we find an irrational infinite back-tracing parity vector
explicitly, say using algebraic properties?



Future work

I In 2010, K. Monks and B. Kraft studied the continuous
endomorphisms of T that come from Hedlund’s other
endomorphisms. Can we use these to obtain further folding
results?

I How can we make use of self-duality and folding mod powers
of 2 to obtain more strongly sufficient sets?

I Are there other graph-theoretic techniques that would be
useful?

I Can we find an irrational infinite back-tracing parity vector
explicitly, say using algebraic properties?



Acknowledgements

The authors would like to thank Gina Monks for her support
throughout this research project.


