### Characterization of queer supercrystals

#### Maria Gillespie, UC Davis On joint work with Graham Hawkes, Wencin Poh, and Anne Schilling

CanaDAM, Minisymposium on Algebraic and Geometric Methods in Combinatorics May 30, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Why 'Crystals'?

- Crystals arise at cold temperatures!
- Kashiwara: 'crystal bases' of representations of quantum groups  $U_q(\mathfrak{g})$  in the limit  $q \to 0$  (q is temperature).
- Rigid combinatorial structures with applications to symmetric function theory, representation theory, geometry...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Why 'Crystals'?

- Crystals arise at cold temperatures!
- Kashiwara: 'crystal bases' of representations of quantum groups  $U_q(\mathfrak{g})$  in the limit  $q \to 0$  (q is temperature).
- Rigid combinatorial structures with applications to symmetric function theory, representation theory, geometry...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

### Talk outline:

- Part 1: Type A crystals (for Lie algebra  $\mathfrak{g} = \mathrm{sl}_n$ )
- Part 2: Queer supercrystals (for quantum queer Lie superalgebra q(n))

### Notation

Lie algebra  $\mathfrak{g}$ Lie bracket [,]

Classical types:  $A_n, B_n, C_n, D_n$ 

Weight lattice  $\Lambda$ 

Simple roots  $\alpha_i$ ,  $i \in I$ 

Generators  $e_i, f_i, h_i$ 

Univ. envel. alg.  $U(\mathfrak{g})$ 

Quantized UEA  $U_q(\mathfrak{g})$ 

### Example/Description

 $\mathfrak{sl}_n$  (trace-0  $n \times n$  matrices) [x, y] = xy - yx

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

### Notation

Lie algebra  $\mathfrak{g}$ Lie bracket [,]

Classical types:  $A_n, B_n, C_n, D_n$ 

- Weight lattice  $\Lambda$
- Simple roots  $\alpha_i$ ,  $i \in I$

Generators  $e_i, f_i, h_i$ 

Univ. envel. alg.  $U(\mathfrak{g})$ 

```
Quantized UEA U_q(\mathfrak{g})
```

### Example/Description

 $\mathfrak{sl}_n$  (trace-0  $n \times n$  matrices) [x, y] = xy - yx

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Type  $A_{n-1}$ 

### Notation

Lie algebra  $\mathfrak{g}$ Lie bracket [,]

Classical types:  $A_n, B_n, C_n, D_n$ 

Weight lattice  $\Lambda$ 

Simple roots  $\alpha_i$ ,  $i \in I$ 

Generators  $e_i, f_i, h_i$ 

Univ. envel. alg.  $U(\mathfrak{g})$ 

```
Quantized UEA U_q(\mathfrak{g})
```

### Example/Description

 $\mathfrak{sl}_n$  (trace-0  $n \times n$  matrices) [x, y] = xy - yx

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Type  $A_{n-1}$ 

 $\mathbb{Z}^n/(1,1,\ldots,1)$ 

### Notation

Lie algebra  $\mathfrak{g}$ Lie bracket [,]

Classical types:  $A_n, B_n, C_n, D_n$ 

Weight lattice  $\Lambda$ 

Simple roots  $\alpha_i$ ,  $i \in I$ 

Generators  $e_i, f_i, h_i$ 

Univ. envel. alg.  $U(\mathfrak{g})$ 

Quantized UEA  $U_q(\mathfrak{g})$ 

### Example/Description

 $\mathfrak{sl}_n$  (trace-0  $n \times n$  matrices) [x, y] = xy - yxType  $A_{n-1}$ 

 $\mathbb{Z}^n/(1, 1, \dots, 1)$  $\alpha_i = (0, \dots, 0, 1, -1, 0, \dots, 0) = \mathbf{e}_i - \mathbf{e}_{i+1}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Notation

Lie algebra  $\mathfrak{g}$ Lie bracket [,]

Classical types:  $A_n, B_n, C_n, D_n$ 

Weight lattice  $\Lambda$ 

Simple roots  $\alpha_i$ ,  $i \in I$ 

Generators  $e_i, f_i, h_i$ 

Univ. envel. alg.  $U(\mathfrak{g})$ 

Quantized UEA  $U_q(\mathfrak{g})$ 

### Example/Description

 $\mathfrak{sl}_n$  (trace-0  $n \times n$  matrices) [x, y] = xy - yxType  $A_{n-1}$ 

$$\begin{split} \mathbb{Z}^n/(1,1,\ldots,1) \\ \alpha_i &= (0,\ldots,0,1,-1,0,\ldots,0) = \mathbf{e}_i - \mathbf{e}_{i+1} \\ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ for } \mathfrak{sl}_2 \\ (\text{Raising, lowering, wt-preserving}) \end{split}$$

・ロト ・ 語 ト ・ 語 ト ・ 語 ・ ・ 日 ・

### Notation

Lie algebra  $\mathfrak{g}$ Lie bracket [,]

Classical types:  $A_n, B_n, C_n, D_n$ 

Weight lattice A

Simple roots  $\alpha_i$ ,  $i \in I$ 

Generators  $e_i, f_i, h_i$ 

Univ. envel. alg.  $U(\mathfrak{g})$ 

Quantized UEA  $U_q(\mathfrak{g})$ 

### Example/Description

 $\mathfrak{sl}_n$  (trace-0  $n \times n$  matrices) [x, y] = xy - yxType  $A_{n-1}$ 

 $\mathbb{Z}^{n}/(1,1,\ldots,1)$   $\alpha_{i} = (0,\ldots,0,1,-1,0,\ldots,0) = \mathbf{e}_{i} - \mathbf{e}_{i+1}$   $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ for } \mathfrak{sl}_{2}$ (Raising, lowering, wt-preserving)  $T(\mathfrak{g}) \mod x \otimes y - y \otimes x = [x, y]$ Contains all g-reps; gen. by  $e_{i}, f_{i}, h_{i}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▼

### Notation

Lie algebra  $\mathfrak{g}$ Lie bracket [,]

Classical types:  $A_n, B_n, C_n, D_n$ 

Weight lattice **A** 

Simple roots  $\alpha_i$ ,  $i \in I$ 

Generators  $e_i, f_i, h_i$ 

Univ. envel. alg.  $U(\mathfrak{g})$ 

Quantized UEA  $U_q(\mathfrak{g})$ 

### Example/Description

 $\mathfrak{sl}_n$  (trace-0  $n \times n$  matrices) [x, y] = xy - yxType  $A_{n-1}$ 

 $\mathbb{Z}^{n}/(1, 1, \ldots, 1)$  $\alpha_i = (0, \ldots, 0, 1, -1, 0, \ldots, 0) = \mathbf{e}_i - \mathbf{e}_{i+1}$  $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$  for  $\mathfrak{sl}_2$ (Raising, lowering, wt-preserving)  $T(\mathfrak{g}) \mod x \otimes y - y \otimes x = [x, y]$ Contains all  $\mathfrak{g}$ -reps; gen. by  $e_i, f_i, h_i$  $\lim_{a \to 1} U_a(\mathfrak{g}) = U(\mathfrak{g})$  $q \rightarrow 0$ : crystal bases for reps

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(Ex. 
$$\mathfrak{g} = \mathfrak{sl}_3$$
)

► **Ground set** *B* ("base")

.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- (Ex.  $\mathfrak{g} = \mathfrak{sl}_3$ )
  - ▶ Ground set B ("base")
  - Weight map  $wt : \mathcal{B} \to \Lambda$  (Ex.
    - $\Lambda = \mathbb{Z}^3/(1,1,1))$

- (2, 1, 0)(1, 2, 0) (2, 0, 1)
  - (1, 1, 1)
- (0,2,1) (1,0,2)

(0, 1, 2)

(Ex.  $\mathfrak{g} = \mathfrak{sl}_3$ )

- ▶ Ground set B ("base")
- Weight map  $wt : \mathcal{B} \to \Lambda$  (Ex.  $\Lambda = \mathbb{Z}^3/(1, 1, 1)$ )
- **Operators**  $f_i : \mathcal{B} \to \mathcal{B} \cup \{0\},\$

$$\operatorname{wt}(f_i(x)) = \operatorname{wt}(x) - \alpha_i$$

$$(\alpha_1 = (1, -1, 0), \ \alpha_2 = (0, 1, -1))$$



(Ex.  $\mathfrak{g} = \mathfrak{sl}_3$ )

- ▶ Ground set B ("base")
- Weight map  $wt : \mathcal{B} \to \Lambda$  (Ex.  $\Lambda = \mathbb{Z}^3/(1, 1, 1)$ )
- **Operators**  $f_i : \mathcal{B} \to \mathcal{B} \cup \{0\},\$

$$\operatorname{wt}(f_i(x)) = \operatorname{wt}(x) - \alpha_i$$

$$(\alpha_1 = (1, -1, 0), \alpha_2 = (0, 1, -1))$$



(Ex.  $\mathfrak{g} = \mathfrak{sl}_3$ )

- ▶ Ground set B ("base")
- Weight map  $wt : \mathcal{B} \to \Lambda$  (Ex.  $\Lambda = \mathbb{Z}^3/(1, 1, 1)$ )
- **Operators**  $f_i : \mathcal{B} \to \mathcal{B} \cup \{0\},\$

$$\operatorname{wt}(f_i(x)) = \operatorname{wt}(x) - \alpha_i$$

$$(\alpha_1 = (1, -1, 0), \alpha_2 = (0, 1, -1))$$

Operators e<sub>i</sub> : B → B ∪ {0} partial inverse of f<sub>i</sub>



(Ex.  $\mathfrak{g} = \mathfrak{sl}_3$ )

- ▶ Ground set B ("base")
- Weight map  $wt : \mathcal{B} \to \Lambda$  (Ex.  $\Lambda = \mathbb{Z}^3/(1, 1, 1)$ )
- **Operators**  $f_i : \mathcal{B} \to \mathcal{B} \cup \{0\},\$

$$\operatorname{wt}(f_i(x)) = \operatorname{wt}(x) - \alpha_i$$

$$(\alpha_1 = (1, -1, 0), \ \alpha_2 = (0, 1, -1))$$

- Operators e<sub>i</sub> : B → B ∪ {0} partial inverse of f<sub>i</sub>
- Lengths  $\varphi_i, \varepsilon_i : \mathcal{B} \to \mathbb{Z}$ , usually:

$$\varphi_i(x) = \max\{k : f_i^k(x) \neq 0\}$$
$$\varepsilon_i(x) = \max\{k : e_i^k(x) \neq 0\}$$



Stembridge: 'Local axioms' determine which crystals correspond to U<sub>q</sub>(g)-representations (for simply-laced types).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Lengths Axiom:
- Non-adjacent operators:
- Adjacent operators:

 Stembridge: 'Local axioms' determine which crystals correspond to U<sub>q</sub>(g)-representations (for simply-laced types).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Lengths Axiom: If  $f_{i\pm 1}(w) = x$ , then  $(\varepsilon_i(w) - \varepsilon_i(x), \varphi_i(w) - \varphi_i(x)) = (0, -1)$  or (1, 0).
- Non-adjacent operators:
- Adjacent operators:

- Stembridge: 'Local axioms' determine which crystals correspond to U<sub>q</sub>(g)-representations (for simply-laced types).
  - Lengths Axiom: If  $f_{i\pm 1}(w) = x$ , then  $(\varepsilon_i(w) - \varepsilon_i(x), \varphi_i(w) - \varphi_i(x)) = (0, -1)$  or (1, 0).
  - ▶ **Non-adjacent operators:** If  $|i j| \ge 2$  then  $f_i, f_j$  commute.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Adjacent operators:

- Stembridge: 'Local axioms' determine which crystals correspond to U<sub>q</sub>(g)-representations (for simply-laced types).
  - Lengths Axiom: If  $f_{i\pm 1}(w) = x$ , then  $(\varepsilon_i(w) - \varepsilon_i(x), \varphi_i(w) - \varphi_i(x)) = (0, -1)$  or (1, 0).
  - ▶ **Non-adjacent operators:** If  $|i j| \ge 2$  then  $f_i, f_j$  commute.
  - Adjacent operators: Suppose  $f_i(w) = x$  and  $f_{i+1}(w) = y$ . Define  $\Delta := (\varepsilon_{i+1}(w) - \varepsilon_{i+1}(x), \varepsilon_i(w) - \varepsilon_i(y))$ . Then:



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Stembridge: 'Local axioms' determine which crystals correspond to U<sub>q</sub>(g)-representations (for simply-laced types).
  - Lengths Axiom: If  $f_{i\pm 1}(w) = x$ , then  $(\varepsilon_i(w) - \varepsilon_i(x), \varphi_i(w) - \varphi_i(x)) = (0, -1)$  or (1, 0).
  - ▶ Non-adjacent operators: If  $|i j| \ge 2$  then  $f_i, f_j$  commute.
  - Adjacent operators: Suppose  $f_i(w) = x$  and  $f_{i+1}(w) = y$ . Define  $\Delta := (\varepsilon_{i+1}(w) - \varepsilon_{i+1}(x), \varepsilon_i(w) - \varepsilon_i(y))$ . Then:



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Stembridge: 'Local axioms' determine which crystals correspond to U<sub>q</sub>(g)-representations (for simply-laced types).
  - Lengths Axiom: If  $f_{i\pm 1}(w) = x$ , then  $(\varepsilon_i(w) - \varepsilon_i(x), \varphi_i(w) - \varphi_i(x)) = (0, -1)$  or (1, 0).
  - ▶ Non-adjacent operators: If  $|i j| \ge 2$  then  $f_i, f_j$  commute.
  - Adjacent operators: Suppose  $f_i(w) = x$  and  $f_{i+1}(w) = y$ . Define  $\Delta := (\varepsilon_{i+1}(w) - \varepsilon_{i+1}(x), \varepsilon_i(w) - \varepsilon_i(y))$ . Then:



◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 → のへぐ

 Unique highest weight elements (killed by all e<sub>i</sub> operators)



イロト 不得 トイヨト イヨト

3

- Unique highest weight elements (killed by all e<sub>i</sub> operators)
- Component determined uniquely by its highest weight



ヘロト 人間 ト 人 ヨト 人 ヨト

э

- Unique highest weight elements (killed by all e<sub>i</sub> operators)
- Component determined uniquely by its highest weight
- In type A: if highest weight is partition λ, character

$$\sum_{b\in\mathcal{B}} x^{\operatorname{wt}(b)}$$

is Schur function  $s_\lambda$ 



- Unique highest weight elements (killed by all e<sub>i</sub> operators)
- Component determined uniquely by its highest weight
- In type A: if highest weight is partition λ, character

$$\sum_{b\in\mathcal{B}} x^{\operatorname{wt}(b)}$$

is Schur function  $s_{\lambda}$ 

Can recover Littlewood-Richardson rule:

$$s_\lambda s_\mu = \sum c^
u_{\lambda\mu} s_
u$$

via crystal tensor products



### Tensor products of crystals

Tensor product  $\mathcal{B} \otimes \mathcal{C}$  is the crystal having:

- $\blacktriangleright$  Ground set  $\mathcal{B}\times \mathcal{C}$
- Weight function  $\operatorname{wt}(x \otimes y) = \operatorname{wt}(x) + \operatorname{wt}(y)$
- Operators

$$e_{i}(x \otimes y) = \begin{cases} e_{i}(x) \otimes y & \varphi_{i}(y) < \varepsilon_{i}(x) \\ x \otimes e_{i}(y) & \varphi_{i}(y) \ge \varepsilon_{i}(x) \end{cases}$$
$$f_{i}(x \otimes y) = \begin{cases} f_{i}(x) \otimes y & \varphi_{i}(y) \le \varepsilon_{i}(x) \\ x \otimes f_{i}(y) & \varphi_{i}(y) > \varepsilon_{i}(x) \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### Standard crystal and tensor products

**Standard crystal**  $\mathcal{B}_0$  for  $\mathfrak{sl}_n$ :



Components of crystal of words  $\mathcal{B}_0^{\otimes 3} = \mathcal{B}_0 \otimes \mathcal{B}_0 \otimes \mathcal{B}_0$  for  $\mathfrak{sl}_3$ :



### Part 2: Lie superalgebras and q(n)

▶ Lie superalgebra: Z<sub>2</sub>-graded algebra g<sub>0</sub> ⊕ g<sub>1</sub> with 'super' Lie bracket [,]. Example:

$$[x, y] = \begin{cases} xy - yx & x \in \mathfrak{g}_0 \text{ or } y \in \mathfrak{g}_0 \\ xy + yx & x, y \in \mathfrak{g}_1 \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

### Part 2: Lie superalgebras and q(n)

▶ Lie superalgebra: Z<sub>2</sub>-graded algebra g<sub>0</sub> ⊕ g<sub>1</sub> with 'super' Lie bracket [,]. Example:

$$[x, y] = \begin{cases} xy - yx & x \in \mathfrak{g}_0 \text{ or } y \in \mathfrak{g}_0 \\ xy + yx & x, y \in \mathfrak{g}_1 \end{cases}$$

- ▶ 'Classical' Lie superalgebras (simple, g<sub>1</sub> is reducible g<sub>0</sub>-rep):
  - Main series: A(m, n), B(m, n), C(n), D(m, n)
  - Deformations:  $D(2, 1; \alpha)$
  - Exceptional: G(3), F(4)
  - Strange: P(n), Q(n) (also analog of type A Lie algebra)

### Part 2: Lie superalgebras and q(n)

Lie superalgebra: Z<sub>2</sub>-graded algebra g<sub>0</sub> ⊕ g<sub>1</sub> with 'super' Lie bracket [,]. Example:

$$[x, y] = \begin{cases} xy - yx & x \in \mathfrak{g}_0 \text{ or } y \in \mathfrak{g}_0 \\ xy + yx & x, y \in \mathfrak{g}_1 \end{cases}$$

▶ 'Classical' Lie superalgebras (simple, g<sub>1</sub> is reducible g<sub>0</sub>-rep):

- Main series: A(m, n), B(m, n), C(n), D(m, n)
- Deformations:  $D(2, 1; \alpha)$
- Exceptional: G(3), F(4)
- Strange: P(n), Q(n) (also analog of type A Lie algebra)
- ▶ Type Q(n): queer Lie superalgebra  $q(n) \cong \mathfrak{sl}_n \oplus \mathfrak{sl}_n$ , generators  $e_i, f_i, h_i$  for  $q(n)_0$ , plus generators  $f_{-1}, e_{-1}, h_{-1}$  for  $q(n)_1$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# q(n) crystals

 Grantcharov, Jung, Kang, Kashiwara, Kim '10: Crystal bases for U<sub>q</sub>(q(n)) representations ('quantum queer supercrystals')

# q(n) crystals

- Grantcharov, Jung, Kang, Kashiwara, Kim '10: Crystal bases for  $U_q(q(n))$  representations ('quantum queer supercrystals')
- Standard queer crystal  $\mathcal{B}_0$ :

$$1 \xrightarrow{2} 3 \xrightarrow{3} \cdots \xrightarrow{n} n+1$$

• Tensor products: Type A rules for positive arrows, and:

$$f_{-1}(b \otimes c) = \begin{cases} b \otimes f_{-1}(c) & \text{if } \operatorname{wt}(b)_1 = \operatorname{wt}(b)_2 = 0\\ f_{-1}(b) \otimes c & \text{otherwise} \end{cases}$$
$$e_{-1}(b \otimes c) = \begin{cases} b \otimes e_{-1}(c) & \text{if } \operatorname{wt}(b)_1 = \operatorname{wt}(b)_2 = 0\\ e_{-1}(b) \otimes c & \text{otherwise} \end{cases}$$

- Characters: Schur P-functions
- QUESTION: Stembridge-like local characterization of queer crystal graphs?

# q(n) crystals

One connected component of  $\mathcal{B}_0^{\otimes 4}$  for  $\mathfrak{q}(3)$ :



Notice 'fake highest weight' element  $3 \otimes 1 \otimes 2 \otimes 1$ .

・ロト・西ト・西ト・日・ 日・ シック

### Restricting to -1, 1 or -1, 2 arrows

### Conjecture (Assaf, Oguz '18)

In addition to the Stembridge axioms for the positive arrows and the assumption that -1 arrows commute with all *i*-arrows for  $i \ge 3$ , the relations below uniquely characterize queer crystals.



### Restricting to -1, 1 or -1, 2 arrows

### Conjecture (Assaf, Oguz '18)

In addition to the Stembridge axioms for the positive arrows and the assumption that -1 arrows commute with all *i*-arrows for  $i \ge 3$ , the relations below uniquely characterize queer crystals.



< ロ > < 同 > < 回 > < 回 >

(GHPS) A counterexample exists!

# Further axioms

Can add extra axioms to entirely characterize q(n) crystals. Require:

### Definition

### **Type** A component graph G(C):

- ▶ Delete −1 arrows; remaining arrows are 'type A'
- ▶ Replace each type A component with a single vertex labeled by highest weight; edge between them if −1 arrow between them.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - 釣�?



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで





### Another component graph



Gives expansion of *P*-schur function *P<sub>λ</sub>* in terms of Schur functions *s<sub>μ</sub>*.

# Combinatorial description of G(C)

Define

$$f_{-i} := s_{w_i}^{-1} f_{-1} s_{w_i}$$
 and  $e_{-i} := s_{w_i}^{-1} e_{-1} s_{w_i}$ 

where  $w_i = s_2 \cdots s_i s_1 \cdots s_{i-1}$  and  $s_i$  is reflection along *i*-string Adding in -i arrows removes fake highest weights [GJKKK]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# Combinatorial description of G(C)

Define

$$f_{-i} := s_{w_i}^{-1} f_{-1} s_{w_i}$$
 and  $e_{-i} := s_{w_i}^{-1} e_{-1} s_{w_i}$ 

where  $w_i = s_2 \cdots s_i s_1 \cdots s_{i-1}$  and  $s_i$  is reflection along *i*-string Adding in -i arrows removes fake highest weights [GJKKK] Define  $f_{(-i,h)} := f_{-i} f_{i+1} f_{i+2} \cdots f_{h-1}$ .

### Proposition (GHPS)

Minimal set of edges to connect G(C): starting at highest weight, apply  $f_{(-i,h)}$  to each vertex v for some i and h > i minimal such that  $f_{(-i,h)}(v)$  is defined.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

# Combinatorial description of G(C)

Define

$$f_{-i} := s_{w_i}^{-1} f_{-1} s_{w_i}$$
 and  $e_{-i} := s_{w_i}^{-1} e_{-1} s_{w_i}$ 

where  $w_i = s_2 \cdots s_i s_1 \cdots s_{i-1}$  and  $s_i$  is reflection along *i*-string Adding in -i arrows removes fake highest weights [GJKKK] Define  $f_{(-i,h)} := f_{-i} f_{i+1} f_{i+2} \cdots f_{h-1}$ .

### Proposition (GHPS)

Minimal set of edges to connect G(C): starting at highest weight, apply  $f_{(-i,h)}$  to each vertex v for some i and h > i minimal such that  $f_{(-i,h)}(v)$  is defined.

Proposition (GHPS) Edge  $C_1 \rightarrow C_2$  is in  $G(\mathcal{C})$  iff

$$e_{-i}u_2 \in C_1$$

for some i, where  $u_2$  is the highest weight element of  $C_2$ .

# Theorem (GHPS)

There are explicit combinatorial algorithms for computing  $f_{-i}$  and  $e_{-i}$  on type A highest weight words.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### **Algorithm** for $f_{-i}$ :

▶ *b*: highest weight word. Ex: *b* = 545423321211

# Theorem (GHPS)

There are explicit combinatorial algorithms for computing  $f_{-i}$  and  $e_{-i}$  on type A highest weight words.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### **Algorithm** for $f_{-i}$ :

- ▶ *b*: highest weight word. Ex: *b* = 545423321211
- Find leftmost  $i, i 1, \dots, 1$ . Ex:  $b = \overline{54}542\overline{3}3\overline{21}211$

# Theorem (GHPS)

There are explicit combinatorial algorithms for computing  $f_{-i}$  and  $e_{-i}$  on type A highest weight words.

### **Algorithm** for $f_{-i}$ :

- ▶ *b*: highest weight word. Ex: *b* = 545423321211
- Find leftmost  $i, i 1, \dots, 1$ . Ex:  $b = \overline{54}542\overline{3}3\overline{21}211$
- Find rightmost i, i 1, ..., 1 from right ending at the  $\overline{1}$ . Ex:  $b = \overline{54}\overline{54}\overline{23}\overline{321}\overline{211}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Theorem (GHPS)

There are explicit combinatorial algorithms for computing  $f_{-i}$  and  $e_{-i}$  on type A highest weight words.

### **Algorithm** for $f_{-i}$ :

- ▶ *b*: highest weight word. Ex: *b* = 545423321211
- Find leftmost  $i, i 1, \dots, 1$ . Ex:  $b = \overline{54}542\overline{3}3\overline{21}211$
- Find rightmost i, i 1, ..., 1 from right ending at the  $\overline{1}$ . Ex:  $b = \overline{54}\overline{54}\overline{23}\overline{3}\overline{21}\overline{2}11$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•  $f_{-i}(b)$ : If  $\overline{j} < \underline{j}$ , lower  $\overline{j}$  to j - 1 and raise  $\underline{j}$  to j + 1. Ex:  $f_{-5}(b) = 436522421211.$ 

# Theorem (GHPS)

There are explicit combinatorial algorithms for computing  $f_{-i}$  and  $e_{-i}$  on type A highest weight words.

### **Algorithm** for $f_{-i}$ :

- ▶ *b*: highest weight word. Ex: *b* = 545423321211
- Find leftmost  $i, i 1, \dots, 1$ . Ex:  $b = \overline{54}542\overline{3}3\overline{21}211$
- Find rightmost i, i 1, ..., 1 from right ending at the  $\overline{1}$ . Ex:  $b = \overline{54}\overline{54}\overline{23}\overline{3}\overline{21}\overline{2}11$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

►  $f_{-i}(b)$ : If  $\overline{j} < \underline{j}$ , lower  $\overline{j}$  to j - 1 and raise  $\underline{j}$  to j + 1. Ex:  $f_{-5}(b) = 436522421211.$ 

Similar algorithms for  $e_{-i}$  and determining if  $f_{-i}$ ,  $e_{-i}$  defined.

# Main Theorem: Characterization

# Theorem (GHPS)

Let C be a connected component of a generic abstract queer crystal such that:

- 1. C satisfies the local axioms of Stembridge, Assaf and Oguz
- The component graph G(C) matches G(D) for some connected component D of B<sup>⊗ℓ</sup>
- 3. C satisfies three extra connectivity axioms. (Put back all -1 arrows.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then C is a queer supercrystal and  $C \cong D$ .

# Main Theorem: Characterization

# Theorem (GHPS)

Let  $\mathcal{C}$  be a connected component of a generic abstract queer crystal such that:

- 1. C satisfies the local axioms of Stembridge, Assaf and Oguz
- The component graph G(C) matches G(D) for some connected component D of B<sup>⊗ℓ</sup>
- 3. C satisfies three extra connectivity axioms. (Put back all -1 arrows.)

Then C is a queer supercrystal and  $C \cong D$ .

# Thank you!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### Connectivity axioms: Almost lowest weight elements



Almost lowest weight elements:

$$arphi_1(b)=2$$
 and  $arphi_i(b)=0$  for all  $i\in I_0arphi\{1\}$ 

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

### Connectivity axioms: Almost lowest weight elements



Almost lowest weight elements:

$$\varphi_1(b) = 2$$
 and  $\varphi_i(b) = 0$  for all  $i \in I_0 \setminus \{1\}$ 

#### Lemma

Almost lowest weight elements are  $g_{j,k} := (e_1 \cdots e_j)(e_1 \cdots e_k)v$ , where v is lowest weight and  $1 \leq j \leq k \leq n$ .

◆□ → ◆□ → ◆ □ → ◆ □ → □ □

### Connectivity axioms

- **C0.**  $\varphi_{-1}(g_{j,k}) = 0$  implies that  $\varphi_{-1}(e_1 \cdots e_k v) = 0$ .
- **C1.** If  $G(\mathcal{C})$  contains edge  $u \to u'$  such that wt(u') is obtained from wt(u) by moving a box from row n + 1 - k to row n + 1 - h with h < k. Then for all  $h < j \le k$ ,

$$f_{-1}g_{j,k} = (e_2 \cdots e_j)(e_1 \cdots e_h)v'$$

where v' is  $I_0$ -lowest weight with  $\uparrow v' = u'$ .

**C2.** (a)  $G(\mathcal{C})$  contains edge  $u \rightarrow u'$  such that wt(u') is obtained from wt(u) by moving a box from row n + 1 - k to row n + 1 - h with h < k or

(b) no such edge exists in G(C)Then for all  $1 \le j \le h$  in case (a) and all  $1 \le j \le k$  in case (b)

$$f_{-1}g_{j,k}=(e_2\cdots e_k)(e_1\cdots e_j)v.$$