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» How many lines in CIP? pass through four given lines?

» Answer: 2, because
Qo (FD) A Qu(FP) A Qu(FO)) A Qo (FW)

has dimension 0 and size 2 for most choices of four lines.

» Grassmannian: Gr(n, k) is the variety of k-dimensional
subspaces of C"

» Rephrasing: How many planes through (0,0) in C* intersect
four such planes in a line? Work in Gr(4,2).

» Schubert variety: For the complete flag
F: 9=FcFkhchkhc---cF,=C",

QA(]:) = {V € Gr(n, k) cdimV n Fn—k+i—>\,- = i}
where ) fits inside a k x (n — k) rectangle HH.
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Note that Qp3(F) is a single point for any flag F.

> The coefficient ¢§, , counts the number of ways of filling
with a chain of skew Littlewood-Richardson tableaux with
contents A1, ..., A,
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Essential terminology

» Littlewood-Richardson tableau of shape v/u: Semistandard
tableau whose reading word is ballot (a.k.a. Yamanouchi).

. [
p=(3,3,1)
11121313 v=1(6,55,4,1)
213144
305

» Semistandard: Entries are increasing down columns, weakly
increasing across rows

» Reading word: Left to right, bottom up (352344123322111).

» Ballot: Every suffix of the reading word (e.g. 123322111) has
at least as many i's as (i + 1)'s for all i > 1.

» Content: The sequence (my, my,...) where m; is the number
of i's in the tableau. Here the content is (4,4,4,2,1).
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The Setup

» “How many” lines in CP3 pass through three given lines?

» Answer: Infinity, forming a one-dimensional Schubert curve
Qo(FD) A Q(FP) A Q(F®)) in Gr(4,2).

» If 3 |Ai| = k(n — k) — 1 then () ), usually has dimension 1.

» Special Schubert curves: flags F;, are maximally tangent at
real points of the rational normal curve in P"1:

(1:t)b—>(1:t:t2:---:t”*1)

» We restrict to the case of three real points, three partitions
a, B,y with |a| +|8| + |y] = k(n — k) — 1; this is sufficient
generality to demonstrate our results. Define

S =5(a,8,7) = Qa(Fo) N Qs(F1) N Qy(Fxo)
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» S(R) - real points of S

[~H(oo) =
LR(a, 8,0.7)

SN0 =
LR(a,0, 8,7)

A=y

Theorem. (Levinson, based on work of Speyer,
Mukhin-Tarasov-Varchenko, Eisenbud-Harris, and others.)
There is a map S — P! that makes S(R) a smooth covering
of the circle RPP!, with finite fibers of size

g A _/
a?ﬁ?’y - a767’y?D - a7D7B7’y.
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The Setup: Real geometry of S

» S(R) - real points of S

"

SN0 = 1[3[x] 7 f7H o) =
LR(0, 0, 8,7) I LR(a, 3,0.7)

——
B (t=1)

» The arcs of S(R) covering R_ and R respectively induce the
shuffling and evacuation-shuffling bijections sh and esh:

LR(a,0,8,7) <= LR(a,B,0,7)
sh

» Monodromy operator: w = sh o esh
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Shuffling

» Shuffling, or JDT: Do an outer jeu de taquin slide with the
as the empty square to get an element of LR(«,, 3,7).
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Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

Shuffling

» Un-rectification: Treat x as largest entry.

v

1111 111
212 12|
11213 21213
T esh(T)
» Shuffle again to compute w = sh o esh:
X111
wT: 11112
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Background on K-theory
» K-theory ring K(Gr(n, k)) has additive basis [0} ].

[Os] = [Oa][0g]-10,]
_ ST (e, [0,]
vlzlal T8l +h] -
kg%gn [Op] - kél;%w[oﬁﬂﬂ]

C??; Y [OBF] - k% Y [OBE]

» Consider holomorphic Euler characteristic
x(Os) = R°(Os) — h1(Os). The map x is additive on
K-theory. We have x(Ogp) = x(Ogp) =1, so

X(OS) = C(%?E,'y - E{%,'y

= [LR(ov.5.7)| — kag
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Computing ka_ﬁﬁﬁ/

» Pechenik and Yong introduced genomic tableaux.
» The data (T, {Xl1,Xk}) corresponds to a genomic tableau if

(i) The squares are non-adjacent and contain the same entry /,
(i) There are no i's between [x; and X, in the reading word of T,
(iii) Deleting either X]; or [Xl, results in a ballot reading word.

» Which of the following are genomic tableaux?

11
112]2

[1]2]3
» K-theoretic content: 3 = (4,2,1)

» Let K(7v¢/a; B) be the set of genomic tableaux of shape v¢/«
and K-theoretic content 3. Then

K= kig. = |[K( /i B)-
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Geometric connections to K-theory

» (Levinson.) Let n(S) be the number of connected
components of S(R), so 1(S) = |orbits(w)|. Then

n(s) = x(Os) (1)
n(S) = x(Os) (mod 2) (2)
» Since x(Os) = |LR(«, [, 8,7)| — K, we have
K > |LR(«,0,3,7)| — |orbits(w)] (3)
K = sign(w) (mod 2) (4)

Is there a combinatorial explanation?
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» Recall: esh consists of rectifying, shuffling, and un-rectifying.

» (G., Levinson.) Local rule, without rectifying: Start at i = 1.

> Phase 1. Switch [x] with the nearest i prior to it in reading order, if
one exists. Increment / by 1 and repeat.
If the [X] precedes all of the i's in reading order, go to Phase 2.
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Proof of local rule

» First prove it directly for horizontal strips, § = (m).
» "Pieri Case:" Moves downwards to next row cyclically.

x|1[1] esh, 1[1]1]
11 — 1]x

1] [

1]1]1 1]1]1
—_—
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» General case: “Factor” the tableau into horizontal and vertical

strips.
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» Switch the [X] with the first element prior to it in a horizontal
strip (as in Pieri case) or with the next element after it in a
vertical strip (conjugate of Pieri case).
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» We can now give a combinatorial proof of the relations
K > |LR(«,0,53,7)| — |orbits(w)],
K = sign(w) (mod 2).
» X; — set of tableaux arising in esh (or sh, equivalently) when
the [X] is between the horizontal strips of (i —1)’'s and /'s.
» ¢ and s; — partial steps of esh and sh.

s1 S S3 St
VS VS LT~ e
X1 2 X3 T Xis1
~—7 ~—=7
el =2} €3 €t

» Partial monodromy operators:
wi=(s1--si1)(sioe)(siy s )

» Key Factorization:

w=shoesh=(s;---st)o (et - €1) =wro---0owrows.

Therefore sign(w) = > sign(w;) = >, sign(s; o &) (mod 2).
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» We can now give a combinatorial proof of the relations
K > |LR(«,0,5,7)| — |orbits(w)],
K = sign(w) (mod 2).
Theorem (G., Levinson.)

The cycles of s; o e; are “mini-Pieri cases”: all steps but one move
the [X] down one row in the strip of i’s, and the last step returns it
to the top of the cycle.

» An orbit O; of s; o e; generates |O;| — 1 of the genomic
tableaux in Phase 1. So

K=> > ol -1

i\ Ojeorbits(wj)



Proof of parity and inequality

» We can now give a combinatorial proof of the relations
K > |LR(e,0,53,7)| — |orbits(w)],
K = sign(w) (mod 2).

» We have

K = > > joil-1

i O,‘EOI‘bitS(w,‘)

= Z rlength(wj)

1

\%

rlength(w)
= |LR(a,, B,7)] — forbits(w)|

Here rlength(7) denotes the minimal number of
transpositions (reflections) needed to generate 7.



Proof of parity and inequality

» We can now give a combinatorial proof of the relations
K > |LR(«,0,53,7)| — |orbits(w)],
K = sign(w) (mod 2).

» We have

K = Z( > 0,1)
i O;eorbits(w;)

Z (sign(w;)) = sign(w) (mod 2)

i



Proof of parity and inequality

» We can now give a combinatorial proof of the relations
K > |LR(«,0,53,7)| — |orbits(w)],

K = sign(w mod 2).
» We have @) )

K =) ool -1
i O;eorbits(w;)

> (sign(w;)) = sign(w) (mod 2)

i

“Elementary!”
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Conjectured “orbit-by-orbit” inequality
» Recall that K > |LR(«, 0, 8, y)| — |orbits(w)|.

Conjecture (G., Levinson.)

For each w-orbit O, there are at least |O| — 1 genomic tableaux
arising in each of Phase 1 and Phase 2 during the orbit.

» Can prove the conjecture for 5 having two rows (for Phase 1).

» Equality holds when w = id, implying that in this case S is a
disjoint union of complex P!'s.

» When does equality hold in general?



Constructing high-genus Schubert curves

» Arithmetic genus: If w has exactly one orbit, it turns out that S is
connected and integral, and the arithmetic genus is
g(5) =1—=x(0s) = K — [LR(e, 13, 8,7)[ + 1.

» Arbitrarily high genus: it suffices to find «, 8,~ such that w has
exactly one orbit O and K » |O]| — 1.
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» Arithmetic genus: If w has exactly one orbit, it turns out that S is
connected and integral, and the arithmetic genus is
§(5) =1—x(0s) = K = [LR(a,3, 8,7) + 1.

» Arbitrarily high genus: it suffices to find «, 8,~ such that w has
exactly one orbit O and K » |O]| — 1.

“The case is one where we have been compelled to
reason backward from effects to causes.”




Constructing high-genus Schubert curves

» Arithmetic genus: If w has exactly one orbit, it turns out that S is
connected and integral, and the arithmetic genus is
g(5) =1—=x(0s) = K — [LR(e, 13, 8,7)[ + 1.

» Arbitrarily high genus: it suffices to find «, 8,~ such that w has
exactly one orbit O and K » |O]| — 1.

» Let t > 2 be a positive integer. Let B = (t + 2)**! and set
a=vy=(t,t—1,t—2,...,2,1); B=(t+1,2,172)

so ¢/« is a staircase-ribbon. Then w has one orbit, and the
arithmetic genus of S is g(S) = (t — 1)(t — 2).

1]1]
2

—

—_
N

—_
w

—_
1




THANK YOU!



Fixed points

Proposition (G., Levinson.)

Let T € LR(«,0, B,7). We have w(T) = T if and only if the
computation of esh(T) consists only of vertical slides in Phase 1

and horizontal slides in Phase 2.

Thus no fixed point (orbit of length 1) can have genomic tableaux,
and so the inequality is an equality for such orbits.
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Corollary

The map w is the identity permutation iff K = 0. Furthermore, in
this case S consists of a disjoint union of copies of IP*.
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» Let t > 2 be a positive integer. Let HH = (t + 1)!*! and
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1] 1] 1]
1 1 2
1 2 1
1|2 x| 1 x|1
3 13 1|3




Geometric constructions

» Curves with arbitrarily many connected components: It
suffices to find «, B, v such that w is the identity map and
the set LR (o, 0, 3,7) is arbitrarily large.

» Let t > 2 be a positive integer. Let HH = (t + 1)!*! and
a=(tt—1,...,2), p=(t1,1); v=(t+1,¢...,3,2,2)

Then w acts as the identity on LR(«, 1, 8,7), which has t — 1
elements, and so S is a disjoint union of t — 1 copies of P!

For t = 4:
1] 1] 1]
1 1 2
1 2 1
x| 2 x|1 x|1
13 1|3 1|3




