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Background on Schubert calculus

� How many lines in CP3 pass through four given lines?

� Answer: 2, because

Ω
�
pF p1qq X Ω

�
pF p2qq X Ω

�
pF p3qq X Ω

�
pF p4qq

has dimension 0 and size 2 for most choices of four lines.

� Grassmannian: Grpn, kq is the variety of k-dimensional
subspaces of Cn

� Rephrasing: How many planes through p0, 0q in C4 intersect
four such planes in a line? Work in Grp4, 2q.

� Schubert variety: For the complete flag

F : ∅ � F0 � F1 � F2 � � � � � Fn � Cn,

ΩλpFq � tV P Grpn, kq : dimV X Fn�k�i�λi ¥ iu

where λ fits inside a k � pn � kq rectangle .
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Background on Schubert Calculus

� Littlewood-Richardson rule: (Generalized.) Let
λ1, . . . , λr � be partitions with

°
|λi | � m. Then in

H�pGrpn, kqq, the classes rΩλs form a basis and

rΩλ1s � � � � � rΩλr s �
¸

|ν|�m

cνλ1,...,λr � rΩνs.

� Example: The coefficient c
�,�,�,� is 2, and

rΩ
�
pF p1qq X Ω

�
pF p2qq X Ω

�
pF p3qq X Ω

�
pF p4qqs � c

�,�,�,�rΩ s.

Note that Ω pFq is a single point for any flag F .

� The coefficient cνλ1,...,λr counts the number of ways of filling ν
with a chain of skew Littlewood-Richardson tableaux with
contents λ1, . . . , λr .
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Essential terminology

� Littlewood-Richardson tableau of shape ν{µ: Semistandard
tableau whose reading word is ballot (a.k.a. Yamanouchi).

1 1 1
2 2

1 2 3 3
2 3 4 4
3 5

µ

µ = (3, 3, 1)

ν = (6, 5, 5, 4, 1)

� Semistandard: Entries are increasing down columns, weakly
increasing across rows

� Reading word: Left to right, bottom up (352344123322111).

� Ballot: Every suffix of the reading word (e.g. 123322111) has
at least as many i ’s as pi � 1q’s for all i ¥ 1.

� Content: The sequence pm1,m2, . . .q where mi is the number
of i ’s in the tableau. Here the content is p4, 4, 4, 2, 1q.
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The Setup

� “How many” lines in CP3 pass through three given lines?

� Answer: Infinity, forming a one-dimensional Schubert curve
Ω pF p1qq X Ω pF p2qq X Ω pF p3qq in Grp4, 2q.

� If
°
|λi | � kpn � kq � 1 then

�
Ωλi usually has dimension 1.

� Special Schubert curves: flags Fti are maximally tangent at
real points of the rational normal curve in Pn�1:

p1 : tq ÞÑ p1 : t : t2 : � � � : tn�1q

� We restrict to the case of three real points, three partitions
α, β, γ with |α| � |β| � |γ| � kpn � kq � 1; this is sufficient
generality to demonstrate our results. Define

S � Spα, β, γq � ΩαpF0q X ΩβpF1q X ΩγpF8q
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The Setup: Real geometry of S

� SpRq - real points of S

� The arcs of SpRq covering R� and R� respectively induce the
shuffling and evacuation-shuffling bijections sh and esh:

LRpα, , β, γq
eshÝÝÑ
ÐÝÝ
sh

LRpα, β, , γq

� Monodromy operator: ω � sh � esh
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� SpRq - real points of S

Theorem. (Levinson, based on work of Speyer,
Mukhin-Tarasov-Varchenko, Eisenbud-Harris, and others.)
There is a map S Ñ P1 that makes SpRq a smooth covering
of the circle RP1, with finite fibers of size

cα,β,γ � cα,β,γ, � cα, ,β,γ .

� The arcs of SpRq covering R� and R� respectively induce the
shuffling and evacuation-shuffling bijections sh and esh:
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The Setup: Real geometry of S

� SpRq - real points of S

� (Fiber over 0) Ø LRpα, , β, γq, the set of tableaux of shape
γc{α with one inner corner marked as the “special box” and
the rest a Littlewood-Richardson tableau of content β.

� (Fiber over 8) Ø LRpα, β, , γq, the set of tableaux of shape
γc{α with one outer corner marked as the “special box” and
the rest a Littlewood-Richardson tableau of content β.
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Shuffling

� Shuffling, or JDT: Do an outer jeu de taquin slide with the
b as the empty square to get an element of LRpα, , β, γq.

1 1 1

1 2 2 2

2 3 3

1 3 4 4

3 4 5 ×

α

γ
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Evacuation-shuffling

� Conjugation of shuffling by JDT rectification.

� Rectification: Treat � as 0.

� Shuffling

� Un-rectification: Treat � as largest entry.

1 1 1

2 2

1 2 3

×
1 1 1

2 2

1 2 3

×

T
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Evacuation-shuffling

� Conjugation of shuffling by JDT rectification.

� Rectification: Treat � as 0.

� Shuffling

� Un-rectification: Treat � as largest entry.
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T eshpT q

� Shuffle again to compute ω � sh � esh:

ωT :

1 1

1 1 2

2 2 3

×



Background on K -theory

� K -theory ring K pGrpn, kqq has additive basis rOλs.

rOS s � rOαs � rOβs � rOγs

�
¸

|ν|¥|α|�|β|�|γ|

p�1q|ν|�|α|�|β|�|γ|kνα,β,γrOνs

� kα,β,γrO s � kα,β,γrO s

� cα,β,γrO s � kα,β,γrO s

� Consider holomorphic Euler characteristic
χpOSq � h0pOSq � h1pOSq. The map χ is additive on
K -theory.

We have χpO q � χpO q � 1, so

χpOSq � cα,β,γ � kα,β,γ

� |LRpα, , β, γq| � kα,β,γ
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Computing kα,β,γ

� Pechenik and Yong introduced genomic tableaux.

� The data pT , tb1,b2uq corresponds to a genomic tableau if

(i) The squares are non-adjacent and contain the same entry i ,
(ii) There are no i ’s between b1 and b2 in the reading word of T ,
(iii) Deleting either b1 or b2 results in a ballot reading word.

� Which of the following are genomic tableaux?

� K -theoretic content: β � p4, 2, 1q

� Let K pγc{α;βq be the set of genomic tableaux of shape γc{α
and K -theoretic content β. Then

K :� kα,β,γ � |K pγc{α;βq|.
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Geometric connections to K -theory

� (Levinson.) Let ηpSq be the number of connected
components of SpRq, so ηpSq � |orbitspωq|. Then

ηpSq ¥ χpOSq (1)

ηpSq � χpOSq pmod 2q (2)

� Since χpOSq � |LRpα, , β, γq| � K , we have

K ¥ |LRpα, , β, γq| � |orbitspωq| (3)

K � signpωq pmod 2q (4)

Is there a combinatorial explanation?
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Local rule for evacuation-shuffling

� Recall: esh consists of rectifying, shuffling, and un-rectifying.
� (G., Levinson.) Local rule, without rectifying: Start at i � 1.

� Phase 1. Switch b with the nearest i prior to it in reading order, if
one exists. Increment i by 1 and repeat.

If the b precedes all of the i ’s in reading order, go to Phase 2.

� Phase 2. If the suffix from b is not tied for pi , i � 1q, switch b
with the nearest i after it in reading order. Repeat this process until
the suffix becomes tied for pi , i � 1q.
Increment i by 1 and repeat until i � `pβq � 1.

1 1 1
× 1 1 2 2
1 2 2 3
3 3 4

4 4
2 3 5
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Proof of local rule

� First prove it directly for horizontal strips, β � pmq.
� ”Pieri Case:” Moves downwards to next row cyclically.

� 1 1
1 1

1

eshÝÝÑ
ÐÝÝ
sh

1 1 1
1 �

1

� 1 1
1 1

1

esh //
1 1 1

1 �
1

sh
ww

1 1 1
� 1

1

esh //
1 1 1

1 1
�

sh
ww

1 1 1
1 1

�

esh //
1 1 �

1 1
1
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Proof of local rule

� General case: “Factor” the tableau into horizontal and vertical
strips.

× 1 1 1 1 1

1 2 2 2 2

2 3 3 3 3

4 4 4

5

1 1 1

× 1 1 2 2

1 2 2 3

3 3 4

4 4

2 3 5

� Switch the b with the first element prior to it in a horizontal
strip (as in Pieri case) or with the next element after it in a
vertical strip (conjugate of Pieri case).
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Proofs of parity and inequality

� We can now give a combinatorial proof of the relations
K ¥ |LRpα, , β, γq| � |orbitspωq|,

K � signpωq pmod 2q.

� Xi – set of tableaux arising in esh (or sh, equivalently) when
the b is between the horizontal strips of pi � 1q’s and i ’s.

� ei and si – partial steps of esh and sh.

X1

e1

88 X2

e2

88

s1
xx

X3

e3

99

s2
xx

� � �
et
55

s3
ww

Xt�1

st
xx

� Partial monodromy operators:
ωi � ps1 � � � si�1qpsi � ei qps

�1
i�1 � � � s

�1
1 q

� Key Factorization:

ω � sh � esh � ps1 � � � stq � pet � � � e1q � ωt � � � � � ω2 � ω1.

Therefore signpωq �
°

signpωi q �
°

signpsi � ei q pmod 2q.
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Proofs of parity and inequality

� We can now give a combinatorial proof of the relations

K ¥ |LRpα, , β, γq| � |orbitspωq|,

K � signpωq pmod 2q.

Theorem (G., Levinson.)

The cycles of si � ei are “mini-Pieri cases”: all steps but one move
the b down one row in the strip of i ’s, and the last step returns it
to the top of the cycle.

� An orbit Oi of si � ei generates |Oi | � 1 of the genomic
tableaux in Phase 1. So

K �
¸
i

�
� ¸

OiPorbitspωi q

|Oi | � 1
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Proof of parity and inequality

� We can now give a combinatorial proof of the relations

K ¥ |LRpα, , β, γq| � |orbitspωq|,

K � signpωq pmod 2q.

� We have

K �
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|Oi | � 1

�
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¸
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rlengthpωi q

¥ rlengthpωq

� |LRpα, , β, γq| � |orbitspωq|

Here rlengthpπq denotes the minimal number of
transpositions (reflections) needed to generate π.
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Proof of parity and inequality

� We can now give a combinatorial proof of the relations
K ¥ |LRpα, , β, γq| � |orbitspωq|,

K � signpωq pmod 2q.
� We have

K �
¸
i

�
� ¸

OiPorbitspωi q

|Oi | � 1

�



�
¸
i

psignpωi qq � signpωq pmod 2q

“Elementary!”



Conjectured “orbit-by-orbit” inequality

� Recall that K ¥ |LRpα, , β, γq| � |orbitspωq|.

� Can prove the conjecture for β having two rows (for Phase 1).

� Equality holds when ω � id, implying that in this case S is a
disjoint union of complex P1’s.

� When does equality hold in general?
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Constructing high-genus Schubert curves

� Arithmetic genus: If ω has exactly one orbit, it turns out that S is
connected and integral, and the arithmetic genus is
gpSq � 1 � χpOSq � K � |LRpα, , β, γq| � 1.

� Arbitrarily high genus: it suffices to find α, β, γ such that ω has
exactly one orbit O and K " |O| � 1.

� Let t ¥ 2 be a positive integer. Let � pt � 2qt�1 and set

α � γ � pt, t � 1, t � 2, . . . , 2, 1q; β � pt � 1, 2, 1t�2q

so γc{α is a staircase-ribbon. Then ω has one orbit, and the
arithmetic genus of S is gpSq � pt � 1qpt � 2q.

1 1
1 2

1 2
1 3

1 4
1 5

� 6
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“The case is one where we have been compelled to
reason backward from effects to causes.”
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Thank You!



Fixed points

Proposition (G., Levinson.)

Let T P LRpα, , β, γq. We have ωpT q � T if and only if the
computation of eshpT q consists only of vertical slides in Phase 1
and horizontal slides in Phase 2.

Thus no fixed point (orbit of length 1) can have genomic tableaux,
and so the inequality is an equality for such orbits.

× 1 1 1

1 2 2

1 2 3 3

2 4

Corollary

The map ω is the identity permutation iff K � 0. Furthermore, in
this case S consists of a disjoint union of copies of P1.
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Geometric constructions

� Curves with arbitrarily many connected components: It
suffices to find α, β, γ such that ω is the identity map and
the set LRpα, , β, γq is arbitrarily large.

� Let t ¥ 2 be a positive integer. Let � pt � 1qt�1 and

α � pt, t� 1, . . . , 2q; β � pt, 1, 1q; γ � pt� 1, t, . . . , 3, 2, 2q

Then ω acts as the identity on LRpα, , β, γq, which has t � 1
elements, and so S is a disjoint union of t � 1 copies of P1.
For t � 4:
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