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Motivation: Schubert curves

� Grassmannian: Grpk , nq is the set of all k-planes in n-space

� Monodromy of real Schubert curves in Grpk , nq over RP1

described by “jeu de taquin” operations (Speyer, 2012)

� Simplified using crystal operators Ei ,Fi (G., Levinson, 2015)

� Key fact: Ei ,Fi commute with jeu de taquin



Motivation: Type B Schubert curves
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� Real Schubert curves in Orthogonal grassmannian
OGpn, 2n � 1q described by shifted Young tableaux (Purbhoo;
G., Levinson, Purbhoo)

� Question: Are there “crystal” operators on shifted tableaux
that commute with shifted jeu de taquin?



Outline

Part 1: Ordinary tableau crystals
(known)

Part 2: Combinatorial “Crystals” for
shifted tableaux (new!)



Tableaux and Schur functions

� Skew shape: λ{µ (below, λ � p5, 3, 3q and µ � p2, 1q)

� Semistandard Young tableau (SSYT): Entries increasing
down columns, weakly increasing across rows

1 3 3

2 2

1 3 4

� Reading word: concatenate rows, bottom up (13422133)

� Weight: wtpT q � pm1,m2, . . .q where mi is the number of i ’s
in T . Weight is p2, 2, 3, 1q above.

� Character: xT � xm1
1 xm2

2 xm3
3 � � � .

� Schur function: sλ{µpx1, x2, . . .q �
°

TPSSYT pλ{µq x
T

� Schur functions are symmetric in xi variables.
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Crystal structure on tableaux

sp2,1qpx1, x2, x3q �

x2
1x2

�x1x
2
2 � x2

1x3

�2x1x2x3

�x2
2x3 � x1x

2
3

�x2x
2
3

F1 : Ö F2 : ×

E1 : Õ E2 : Ô

1 1
2

1 2
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1 1
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Type A Crystals

� Arise from representation theory of Lie algebras.
Example: sl2 � tM P Matp2q : trpMq � 0u generated by:

e �

�
0 1
0 0



, f �

�
0 0
1 0



, h �

�
1 0
0 �1




� Type An Crystal: A set B along with operators

ei , fi : B Ñ B Y t∅u, εi , ϕi : B Ñ Z

for 1 ¤ i ¤ n, and a map wt : B Ñ Zn�1 such that:

(1) If X ,Y P B then ei pX q � Y iff fi pY q � X . In this case,

εi pY q � εi pX q � 1, ϕi pY q � ϕi pX q � 1

and wtpY q � wtpX q � p0i�1, 1,�1, 0n�i q
(2) For any i and any X P B, ϕi pX q� εi pX q � wtpX qi �wtpX qi�1.

(Often ϕi pX q � number of fi steps that can be applied to X .)
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Defining Tableaux crystals: Jeu de Taquin slides

� Inner slide:

1 3 3

2 2

1 3 4

∗

� Rectification: Sequence of jeu de taquin slides leading to a
straight shape tableau rectpT q.

� T is highest weight if rectpT q is highest weight for its shape:

1 1 1 1

2 2

3

1
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1 2 3 3

2 4

1 3 ∗
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Tableaux crystal structure

� Straight shape SSYT’s of shape p5, 3q with entries 1, 2:

1 1 1 1 1
2 2 2

1 1 1 1 2
2 2 2

1 1 1 2 2
2 2 2

F1 ∅∅

� F1 changes last 1 to 2 if possible, maps to ∅ otherwise. E1

changes first 2 in top row to 1 if possible, maps to ∅
otherwise.

� Outer slides to get maps F1,E1 on skew tableaux:

1 1 1 1
1 2 2 2

1 1 1 2
1 2 2 2

1 1 1 2
2 2 2 2

F1 F1 F1

E1 E1E1

∅∅
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Tableaux crystal structure

� Local rule for skew shapes: In reading word, substitute
2 �‘(’ and 1 �‘)’, match parentheses.

1
1 2 2

1 1 1 1 2
2 2

2 2 1 1 1 1 2 1 2 2 1
p p q q q q p q p p q

� F1 changes the rightmost unmatched 1 to 2 if it exists.

� E1 changes the leftmost unmatched 2 to 1 if it exists.

� Map to ∅ otherwise

� Coplactic: E1,F1 commute with all JDT slides
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Operators Ei and Fi for general i

� Ei and Fi defined similarly on the subword or subtableau of
letters i , i � 1.

Example

F2p1221332q � 1231332:

1 2 2 1 3 3 2
q q p p q

� Highest weight ðñ killed by all Ei ’s (top of crystal graph).

� Skew Littlewood-Richardson Rule:

sλ{µ �
¸
ν

cλµνsν

where cλµν is the number of highest weight tableaux of shape
λ{µ and weight ν.
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sp3,1q{p1q �
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Example
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Example

sp3,1q{p1q � sp2,1q � sp3q

1 1
2

1 2
2

1 1
3

1 2
3

1 3
2

2 2
3

1 3
3

2 3
3

1 1 1

1 1 2

1 2 2 1 1 3

2 2 2 1 2 3

2 2 3 1 3 3

2 3 3

3 3 3



Alternately: Stembridge’s axiomatic description

View crystal as a Zn-weighted, edge-labeled (by 1, . . . , n � 1)
directed graph G . Arrow labeled i is fi .

Basic structure:

Axiom. Following an edge w
i
ÝÑ x lowers the weight:

wtpxq � wtpwq � αi � p0 . . . ,�1, 1, . . . 0q.

Axiom. For each i , the i-connected components are strings:


i
ÝÑ 

i
ÝÑ 

i
ÝÑ 

i
ÝÑ 

i
ÝÑ 

Set εi pwq � #ei -steps available starting from w ,
ϕi pwq � #fi -steps.

Axiom. For |i � j | ¡ 1: edges commute:

•

••

•
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Length axiom

Axiom. Suppose w
i�1
ÝÝÑx . Then the i-strings passing through w and x

are related in one of the following two ways:

w

x

OR

pεi pwq � εi pxq, ϕi pwq � ϕi pxqq � p0,�1q or p1, 0q.
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Axioms relating arrows
i
ÝÑ,

i�1
ÝÝÑ

Axiom. Suppose w
i
ÝÑ x and w

i�1
ÝÝÑy . Compare ε values:

∆ :�pεi�1pwq � εi�1pxq, εi pwq � εi pyqq

�p1, 1q, p1, 0q, p0, 1q or p0, 0q.

Then: ∆ � p0, 0q ∆ � p0, 0q

Also: dual versions of same axioms (for going backwards).
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Stembridge axioms

Theorem (Stembridge ’03)

Let G be a finite connected graph satisfying the local axioms.

Then G has a unique highest-weight element g�, with wtpg�q � λ
a partition, and canonically G � SSYT pλ, nq.

� Corollary (without ‘connected’ hypothesis):
Weight generating function of G is Schur-positive!

(each connected component Ø some SSYT pλ, nq).

� Morse-Schilling (2015): Crystal-theoretic proof of Schur
positivity for Stanley symmetric functions
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Part 2: Shifted tableaux

� Shifted partitions: Partitions with distinct parts; ith row
shifted to the right i steps.

λ = (6, 4, 2, 1)

� Skew shape: λ{µ

� Semistandard tableau: 11   1   21   2   31   3   � � � is
alphabet, entries weakly increasing down and right. Primed
letters can only repeat in columns and unprimed only in rows.

� Canonical form: Southwest-most i or i 1 is always unprimed.
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Schur Q-functions (Hall-Littlewood, Stembridge,...)

3

1′ 1 2′

1′ 2
1 1

� Weight: wtpT q � pm1,m2, . . .q where mi is the number of i
and i 1 entries. Above, p5, 2, 1q.

� Highest weight: JDT rectification has weight equal to shape

� Character: xT � 2`pT qxm1
1 xm2

2 � � � where `pT q is the number
of nonzero entries in wtpT q. Above, xT � 8x5

1x
2
2x3.

� Schur Q-functions:

Qλ{µpx1, x2, . . .q �
¸

TPShSTpλ{µq

xT



Schur Q-functions (Hall-Littlewood, Stembridge,...)

3

1′ 1 2′

1′ 2
1 1

� Weight: wtpT q � pm1,m2, . . .q where mi is the number of i
and i 1 entries. Above, p5, 2, 1q.

� Highest weight: JDT rectification has weight equal to shape
� Character: xT � 2`pT qxm1

1 xm2
2 � � � where `pT q is the number

of nonzero entries in wtpT q. Above, xT � 8x5
1x

2
2x3.

� Schur Q-functions:

Qλ{µpx1, x2, . . .q �
¸

TPShSTpλ{µq

xT



Operators Ei , Fi , E
1
i , F

1
i (G., Levinson, Purbhoo.)

� Consider i � 1 as before. Restrict to alphabet t11, 1, 21, 2u.
Shape can have two rows:

2

1 1 1 1
2

1 1 1 2

2

1 1 2 2

2

1 1 1 2′

2

1 1 2′ 2
2

1 2′ 2 2
F1

F1

F1

F1F ′
1

F ′
1

F ′
1

Or one row:

1 1 1 1 1 1 1 2 1 1 2 2 1 2 2 2 2 2 2 2
F1 F1 F1 F1 F1 ∅
F ′
1 F ′

1 F ′
1 F ′

1 F ′
1

� Extend to skew shapes by applying outer slides.

� Theorem. (G., Levinson, Purbhoo, 2016.) There are local,
fast (Opnq) combinatorial rules for these operators that do
not require JDT, similar to parentheses rule for ordinary
tableaux. (arxiv:1706.09969)
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Crystal-like structure

� “Crystal graph” for i � 1, 2:

F1 F 1
1 F2 F 1

2

� Results:

� Graph structure implies
Qλ is symmetric.

� T is highest weight iff
Ei pT q � E 1

i pT q � ∅ for
all i .

� Connected components
have unique highest
weights

� Gives LR decomposition
Qλ{µ �

°
ν f

λ
µνQν .

2
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2
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3
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2
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Axioms for shifted tableau crystals

G � Zn-weighted digraph, edge labels t11, 1, . . . , n�11, n�1u.

Basic structure:

Axiom. Following an edge w
i or i 1
ÝÝÝÑ x lowers the weight:

wtpxq � wtpwq � αi � p0 . . . ,�1, 1 . . . 0q.

Axiom. For |i � j | ¡ 1, all i , j , i 1, j 1 edges commute.

Axiom. The ti , i 1u-connected components are doubled strings:

• •
•

•
•

•
•

•
• •

or
• • • • • •

(iff wti � 0 at bottom)

Set εi pwq, ϕi pwq � total # steps to top, bottom
Also ε1i , ϕ

1
i (#t99Ku only) and pεi , pϕi (#tÝÑu only).
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Length Axiom for shifted tableau crystals

Axiom. Suppose w
i�1 or i�11

ÝÝÝÝÝÝÝÝÑ x . Then

pεi pwq � εi pxq, ϕi pwq � ϕi pxqq � p0,�1q or p1, 0q.

Same two possibilities as Stembridge:

• •• •• •• •• •• •

• •• •• •• •• •• •• •

• •• •• •• •• •• •

• •• •• •• •• •
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Relations between
1 or 11
ÝÝÝÑ,

2 or 21
ÝÝÝÑ

Suppose we have two edges: w
1 or 11

ÝÝÝÝÑx ,w
2 or 21

ÝÝÝÝÑy .

Define: ∆ � pε2pwq � ε2pxq, ε1pwq � ε1pyqq

� p1, 1q, p1, 0q, p0, 1q or p0, 0q.

Axioms. For tf 11 , f
1

2u, tf1, f
1

2u, tf
1

1 , f2u (assume f2 � f 12):

Conditions Axiom Conditions Axiom

–

•

••

•

–

•

••

•
∆ � p0, 0q,
ϕ2pwq � 1,xϕ2pwq � 0

•

••

•

pε1pwq ¡ 0

•

••

•

Note: No axiom for tf1, f
1

2u when pε1pwq � 0!
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Relations between
1
ÝÝÑ,

2
ÝÝÑ

The interesting case: w
1
ÝÝÑx ,w

2
ÝÝÑy .

Observation. By applying previous axioms, reduce to case where
f 11 (99K) not defined.

•

•• •

••

Then, the axioms for tf1, f2u resemble Stembridge axioms!
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Relations between
1
ÝÝÑ,

2
ÝÝÑ

Assume f 11 is not defined at w , and f2 � f 12 (‘strict’ solid edge).

Axioms for tf1, f2u:

Conditions Axiom Conditions Axiom

∆ � p0, 1q, p1, 0q

•

••

•

∆ � p1, 1q

•

••

•

∆ � p0, 0q,pϕ1pf2pwqq ¥ 2

•

••

••

••

•

∆ � p0, 0q,pϕ1pf2pwqq   2

•

••

••

••

•



Uniqueness of shifted tableau crystals

Theorem (G., Levinson)

Let G be a finite connected graph satisfying these local axioms.

� G has a unique maximal element g�, and wtpg�q � σ is a
strict partition.

� There is a canonical isomorphism ShSYT pσ, nq
�
ÝÝÑ G .

In particular, the generating function¸
gPG

2`pwtpgqqxwtpgq

is Schur Q positive.



Application: Type B Schubert curves

2

1 1 2′
× 1

2

1 1 2

× 1

2

× 1 2′
1′ 1

0

1

∞

� Zero fiber labeled by tableaux of a skew shifted shape
consisting of a marked inner corner (‘�’) and a highest weight
tableau of a fixed weight ν.



The monodromy operator (G., Levinson, Purbhoo)

� Monodromy operator ω is given by commutator of rectification
with jeu de taquin (based on work of Levinson, Speyer):

1. Rectify, with b � 0
2. Slide the b to an outer corner with an outer JDT slide
3. Unrectify to the original shape, with b � 8
4. Slide the b back to an inner corner
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2
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ωpT q
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A new local algorithm (G., Levinson, Purbhoo)

� Local rule for steps 1� 3, without rectifying:
� Phase 1. Switch b with the nearest 11 after it in reading

order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 21 and 2, and so on until there
is no i 1 after it for some i .

At this point go to Phase 2.
� Phase 2. Replace the b with i 1 and apply Fi ,Fi�1, . . . in that

order until only one entry is changing. Then replace that entry
with b.

3

1′ 1 1
× 1′ 2′

1 2
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� Local rule for steps 1� 3, without rectifying:
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Future work

� Morse-Schilling approach to Schur Q-positivity of type B
Stanley symmetric functions using the local axioms?

� Type A crystals correspond to representations of sln.
Representation theory for these crystals? Relation to quantum
queer superalgebra crystals of Grantcharov et. al?

� Geometry of type B Schubert curves (monodromy operator
now understood in terms of crystal-like operators).
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