A combinatorial approach to Macdonald *q*, *t*-symmetry via the Carlitz bijection

Maria Monks Gillespie UC Davis

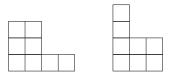
FPSAC Vancouver July 4, 2016

► Macdonald polynomials H
_µ(X; q, t) are symmetric functions in X = {x₁, x₂, x₃,...} with coefficients in Z[q, t].

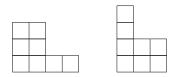
- ► Macdonald polynomials H
 _µ(X; q, t) are symmetric functions in X = {x₁, x₂, x₃,...} with coefficients in Z[q, t].
- Here $\mu = (\mu_1, \dots, \mu_k) \in \mathbb{Z}_+^k$ is any **partition**, i.e. $\mu_1 \ge \mu_2 \ge \dots \ge \mu_k$.

- ► Macdonald polynomials H
 _µ(X; q, t) are symmetric functions in X = {x₁, x₂, x₃,...} with coefficients in Z[q, t].
- Here $\mu = (\mu_1, \dots, \mu_k) \in \mathbb{Z}_+^k$ is any **partition**, i.e. $\mu_1 \ge \mu_2 \ge \dots \ge \mu_k$.
- Young diagram: $\mu = (4, 2, 2)$

- ► Macdonald polynomials H
 _µ(X; q, t) are symmetric functions in X = {x₁, x₂, x₃, ...} with coefficients in Z[q, t].
- Here $\mu = (\mu_1, \dots, \mu_k) \in \mathbb{Z}_+^k$ is any **partition**, i.e. $\mu_1 \ge \mu_2 \ge \dots \ge \mu_k$.
- Young diagram: $\mu = (4, 2, 2)$, $\mu^* = (3, 3, 1, 1)$

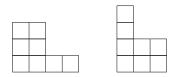


- ► Macdonald polynomials H
 _µ(X; q, t) are symmetric functions in X = {x₁, x₂, x₃,...} with coefficients in Z[q, t].
- Here $\mu = (\mu_1, \dots, \mu_k) \in \mathbb{Z}_+^k$ is any **partition**, i.e. $\mu_1 \ge \mu_2 \ge \dots \ge \mu_k$.
- Young diagram: $\mu = (4, 2, 2)$, $\mu^* = (3, 3, 1, 1)$



 Related to classical Macdonald polynomials P_λ by a transformation, arise naturally in the geometry of the Hilbert scheme of points in the plane. (Haiman)

- ► Macdonald polynomials H
 _µ(X; q, t) are symmetric functions in X = {x₁, x₂, x₃,...} with coefficients in Z[q, t].
- Here $\mu = (\mu_1, \dots, \mu_k) \in \mathbb{Z}_+^k$ is any **partition**, i.e. $\mu_1 \ge \mu_2 \ge \dots \ge \mu_k$.
- Young diagram: $\mu = (4, 2, 2)$, $\mu^* = (3, 3, 1, 1)$



- Related to classical Macdonald polynomials P_λ by a transformation, arise naturally in the geometry of the Hilbert scheme of points in the plane. (Haiman)
- q, t-symmetry (via geometry): $\widetilde{H}_{\mu}(X; q, t) = \widetilde{H}_{\mu^*}(X; t, q)$

Combinatorial Formula:

$$\widetilde{H}_{\mu}(X;q,t) = \sum_{\sigma: \mu o \mathbb{Z}_+} q^{\mathsf{inv}(\sigma)} t^{\mathsf{maj}(\sigma)} x^{\sigma}$$

Combinatorial Formula:

$$\widetilde{H}_{\mu}(X; q, t) = \sum_{\sigma: \mu o \mathbb{Z}_+} q^{\mathsf{inv}(\sigma)} t^{\mathsf{maj}(\sigma)} x^{\sigma}$$

• $\sigma: \mu \to \mathbb{Z}_+$ is a filling of the Young diagram of μ with positive integers.

Example:
$$\mu = (3, 2, 2), \ \sigma = \boxed{\begin{array}{c|c} 5 & 1 \\ 2 & 1 \\ 2 & 3 & 2 \end{array}}$$

Combinatorial Formula:

$$\widetilde{H}_{\mu}(X;q,t) = \sum_{\sigma: \mu o \mathbb{Z}_+} q^{\mathsf{inv}(\sigma)} t^{\mathsf{maj}(\sigma)} x^{\sigma}$$

• $\sigma: \mu \to \mathbb{Z}_+$ is a filling of the Young diagram of μ with positive integers.

Example:
$$\mu = (3, 2, 2), \ \sigma = \begin{bmatrix} 5 & 1 \\ 2 & 1 \\ 2 & 3 & 2 \end{bmatrix}$$

 $x^{\sigma} = \prod x_i^{|\sigma^{-1}(i)|}$, in this case $x_1^2 x_2^3 x_3 x_5$

Combinatorial Formula:

$$\widetilde{H}_{\mu}(X;q,t) = \sum_{\sigma: \mu o \mathbb{Z}_+} q^{\mathsf{inv}(\sigma)} t^{\mathsf{maj}(\sigma)} x^{\sigma}$$

• $\sigma: \mu \to \mathbb{Z}_+$ is a filling of the Young diagram of μ with positive integers.

Example:
$$\mu = (3, 2, 2), \ \sigma = \begin{bmatrix} 5 & 1 \\ 2 & 1 \\ 2 & 3 & 2 \end{bmatrix}$$

- $x^{\sigma} = \prod x_i^{|\sigma^{-1}(i)|}$, in this case $x_1^2 x_2^3 x_3 x_5$
- inv and maj are statistics on fillings that generalize inv and maj on permutations.

Combinatorial Formula:

$$\widetilde{H}_{\mu}(X;q,t) = \sum_{\sigma: \mu o \mathbb{Z}_+} q^{\mathsf{inv}(\sigma)} t^{\mathsf{maj}(\sigma)} x^{\sigma}$$

▶ $\sigma: \mu \to \mathbb{Z}_+$ is a filling of the Young diagram of μ with positive integers.

Example:
$$\mu = (3, 2, 2), \ \sigma = \begin{bmatrix} 5 & 1 \\ 2 & 1 \\ 2 & 3 & 2 \end{bmatrix}$$

•
$$x^{\sigma} = \prod x_i^{|\sigma^{-1}(i)|}$$
, in this case $x_1^2 x_2^3 x_3 x_5$

- inv and maj are statistics on fillings that generalize inv and maj on permutations.
- q, t-symmetry not obvious from this formula

• Let $\pi_1 \pi_2 \cdots \pi_n$ be a permutation of [n]. Then

$$\mathsf{inv}(\pi) = |\{(i,j): i < j, \pi_i > \pi_j\}|,$$
 $\mathsf{maj}(\pi) = \sum_{\pi_d > \pi_{d+1}} d$

• Let $\pi_1 \pi_2 \cdots \pi_n$ be a permutation of [n]. Then

$$\mathsf{inv}(\pi) = |\{(i,j): i < j, \pi_i > \pi_j\}|,$$
 $\mathsf{maj}(\pi) = \sum_{\pi_d > \pi_{d+1}} d$

• Let $\pi_1 \pi_2 \cdots \pi_n$ be a permutation of [n]. Then

$$\mathsf{inv}(\pi) = |\{(i,j): i < j, \pi_i > \pi_j\}|,$$
 $\mathsf{maj}(\pi) = \sum_{\pi_d > \pi_{d+1}} d$

• Let $\pi_1 \pi_2 \cdots \pi_n$ be a permutation of [n]. Then

$$\mathsf{inv}(\pi) = |\{(i,j): i < j, \pi_i > \pi_j\}|,$$
 $\mathsf{maj}(\pi) = \sum_{\pi_d > \pi_{d+1}} d$

• Let $\pi_1 \pi_2 \cdots \pi_n$ be a permutation of [n]. Then

$$\mathsf{inv}(\pi) = |\{(i,j): i < j, \pi_i > \pi_j\}|,$$
 $\mathsf{maj}(\pi) = \sum_{\pi_d > \pi_{d+1}} d$

• Let $\pi_1 \pi_2 \cdots \pi_n$ be a permutation of [n]. Then

$$\mathsf{inv}(\pi) = |\{(i,j): i < j, \pi_i > \pi_j\}|,$$
 $\mathsf{maj}(\pi) = \sum_{\pi_d > \pi_{d+1}} d$

• Let $\pi_1 \pi_2 \cdots \pi_n$ be a permutation of [n]. Then

$$\mathsf{inv}(\pi) = |\{(i,j): i < j, \pi_i > \pi_j\}|,$$
 $\mathsf{maj}(\pi) = \sum_{\pi_d > \pi_{d+1}} d$

• Let $\pi_1 \pi_2 \cdots \pi_n$ be a permutation of [n]. Then

$$\mathsf{inv}(\pi) = |\{(i,j): i < j, \pi_i > \pi_j\}|,$$
 $\mathsf{maj}(\pi) = \sum_{\pi_d > \pi_{d+1}} d$

$$\mathsf{inv}(\pi) = |\{(i,j): i < j, \pi_i > \pi_j\}|,$$
 $\mathsf{maj}(\pi) = \sum_{\pi_d > \pi_{d+1}} d$

• Example:
$$inv(51423) = 6$$
, $maj(51423) =$

$$\mathsf{inv}(\pi) = |\{(i,j): i < j, \pi_i > \pi_j\}|,$$
 $\mathsf{maj}(\pi) = \sum_{\pi_d > \pi_{d+1}} d$

• Example:
$$inv(51423) = 6$$
, $maj(51423) = 1 + 1$

$$\mathsf{inv}(\pi) = |\{(i,j): i < j, \pi_i > \pi_j\}|,$$
 $\mathsf{maj}(\pi) = \sum_{\pi_d > \pi_{d+1}} d$

• Example:
$$inv(51423) = 6$$
, $maj(51423) = 1 + 3$

$$\mathsf{inv}(\pi) = |\{(i,j): i < j, \pi_i > \pi_j\}|,$$
 $\mathsf{maj}(\pi) = \sum_{\pi_d > \pi_{d+1}} d$

• Let $\pi_1 \pi_2 \cdots \pi_n$ be a permutation of [n]. Then

$$\mathsf{inv}(\pi) = |\{(i,j): i < j, \pi_i > \pi_j\}|,$$
 $\mathsf{maj}(\pi) = \sum_{\pi_d > \pi_{d+1}} d$

• Example: inv(51423) = 6, maj(51423) = 1 + 3 = 4

inv and maj are equidistributed:

$$\sum_{\pi\in S_n} q^{\mathsf{inv}(\pi)} = \sum_{\pi\in S_n} q^{\mathsf{maj}(\pi)} = (1)(1\!+\!q)(1\!+\!q\!+\!q^2)\cdots(1\!+\!q\!+\!\cdots\!+\!q^{n-1})$$

• Let $\pi_1 \pi_2 \cdots \pi_n$ be a permutation of [n]. Then

$$\mathsf{inv}(\pi) = |\{(i,j): i < j, \pi_i > \pi_j\}|,$$
 $\mathsf{maj}(\pi) = \sum_{\pi_d > \pi_{d+1}} d$

• Example: inv(51423) = 6, maj(51423) = 1 + 3 = 4

inv and maj are equidistributed:

$$\sum_{\pi \in \mathcal{S}_n} q^{\mathsf{inv}(\pi)} = \sum_{\pi \in \mathcal{S}_n} q^{\mathsf{maj}(\pi)} = (1)(1\!+\!q)(1\!+\!q\!+\!q^2) \cdots (1\!+\!q\!+\!\cdots\!+\!q^{n-1})$$

• Combinatorial proofs: Find a "weight-preserving" bijection $\phi: S_n \to S_n$, i.e. a bijection such that $\operatorname{maj}(\phi(\pi)) = \operatorname{inv}(\pi)$. Several such maps have been found (Carlitz, Foata,...)

▶ **Carlitz codes:** Let $C_n = \{c_1c_2 \cdots c_n : \forall i, 0 \le c_i \le n-i\}$. Define the *weight* of a code $c \in C_n$ to be $|c| = \sum_i c_i$. Then

$$\sum_{c \in \mathcal{C}_n} q^{|c|} = (1)(1+q)(1+q+q^2) \cdots (1+q+\cdots+q^{n-1})$$

▶ **Carlitz codes:** Let $C_n = \{c_1 c_2 \cdots c_n : \forall i, 0 \le c_i \le n - i\}$. Define the *weight* of a code $c \in C_n$ to be $|c| = \sum_i c_i$. Then

$$\sum_{c \in C_n} q^{|c|} = (1)(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})$$

► Carlitz bijection: Composite φ : S_n → S_n of two weight-preserving bijections

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n.$$

Weight-preserving: $|majcode(\pi)| = maj(\pi)$ and $|invcode(\pi)| = inv(\pi)$.

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

majcode: Remove entries starting with the largest, c_i records the amount maj decreases at the *i*th step:

Word	maj	Ci
51423	4	

majcode(51423) =

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

Word	maj	Ci
51423	4	
1423		

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

Word	maj	Ci
51423	4	
1423	2	

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

Word	maj	Ci
51423	4	
1423	2	2

$$majcode(51423) = 2$$

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

Word	maj	Ci
51423	4	
1423	2	2
123		

$$majcode(51423) = 2$$

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

Word	maj	Ci
51423	4	
1423	2	2
123	0	

$$majcode(51423) = 2$$

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

Word	maj	Ci
51423	4	
1423	2	2
123	0	2

$$majcode(51423) = 22$$

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

Word	maj	Ci
51423	4	
1423	2	2
123	0	2
12		

$$majcode(51423) = 22$$

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

majcode: Remove entries starting with the largest, c_i records the amount maj decreases at the *i*th step:

Word	maj	Ci
51423	4	
1423	2	2
123	0	2
12	0	

$$majcode(51423) = 22$$

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

majcode: Remove entries starting with the largest, c_i records the amount maj decreases at the *i*th step:

Word	maj	Ci
51423	4	
1423	2	2
123	0	2
12	0	0

$$majcode(51423) = 220$$

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

majcode: Remove entries starting with the largest, c_i records the amount maj decreases at the *i*th step:

Word	maj	Ci
51423	4	
1423	2	2
123	0	2
12	0	0
1		

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

majcode: Remove entries starting with the largest, c_i records the amount maj decreases at the *i*th step:

Word	maj	Ci
51423	4	
1423	2	2
123	0	2
12	0	0
1	0	

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

majcode: Remove entries starting with the largest, c_i records the amount maj decreases at the *i*th step:

Word	maj	Ci
51423	4	
1423	2	2
123	0	2
12	0	0
1	0	0

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

majcode: Remove entries starting with the largest, c_i records the amount maj decreases at the *i*th step:

Word	maj	Ci
51423	4	
1423	2	2
123	0	2
12	0	0
1	0	0
Ø		

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

majcode: Remove entries starting with the largest, c_i records the amount maj decreases at the *i*th step:

Word	maj	Ci
51423	4	
1423	2	2
123	0	2
12	0	0
1	0	0
Ø	0	

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

majcode: Remove entries starting with the largest, c_i records the amount maj decreases at the *i*th step:

Word	maj	Ci
51423	4	
1423	2	2
123	0	2
12	0	0
1	0	0
Ø	0	0

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

• invcode: c_i is the number of inversions (j, i) where i < j.

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

- **invcode**: c_i is the number of inversions (j, i) where i < j.
- 34125 has four inversions:

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

- **invcode**: c_i is the number of inversions (j, i) where i < j.
- 34125 has four inversions: (3,1)

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

- **invcode**: c_i is the number of inversions (j, i) where i < j.
- ▶ 34125 has four inversions: (3,1), (3,2)

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

- **invcode**: c_i is the number of inversions (j, i) where i < j.
- ▶ 34125 has four inversions: (3,1), (3,2), (4,1)

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

- **invcode**: c_i is the number of inversions (j, i) where i < j.
- ▶ 34125 has four inversions: (3,1), (3,2), (4,1), and (4,2)

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

- **invcode**: c_i is the number of inversions (j, i) where i < j.
- ▶ 34125 has four inversions: (3,1), (3,2), (4,1), and (4,2)
- $c_1 = 2, c_2 = 2, \text{ all other } c_i = 0.$

$$invcode(34125) = 22000$$

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

- **invcode**: c_i is the number of inversions (j, i) where i < j.
- ▶ 34125 has four inversions: (3,1), (3,2), (4,1), and (4,2)

•
$$c_1 = 2, c_2 = 2, \text{ all other } c_i = 0.$$

$$invcode(34125) = 22000$$

 Since majcode(51423) = 22000 as well, the Carlitz bijection sends

$$S_n \xrightarrow{\text{majcode}} C_n \xleftarrow{\text{invcode}} S_n$$

- **invcode**: c_i is the number of inversions (j, i) where i < j.
- ▶ 34125 has four inversions: (3,1), (3,2), (4,1), and (4,2)

•
$$c_1 = 2$$
, $c_2 = 2$, all other $c_i = 0$.

$$invcode(34125) = 22000$$

 Since majcode(51423) = 22000 as well, the Carlitz bijection sends

$$51423 \rightarrow 34125.$$

 Can extend the Carlitz bijection from permutations to words of any content.

Conjugate Symmetry in q and t

Recall that

$$\widetilde{H}_{\mu}(X;q,t) = \widetilde{H}_{\mu^*}(X;t,q).$$

• Take the coefficient of $x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots$ on both sides:

$$\sum_{\substack{\sigma:\mu o\mathbb{Z}_+\ |\sigma^{-1}(i)|=lpha_i}} q^{\mathsf{inv}(\sigma)} t^{\mathsf{maj}(\sigma)} = \sum_{\substack{
ho:\mu^* o\mathbb{Z}_+\ |
ho^{-1}i|=lpha_i}} q^{\mathsf{maj}(
ho)} t^{\mathsf{inv}(
ho)}.$$

Conjugate Symmetry in q and t

Recall that

$$\widetilde{H}_{\mu}(X;q,t) = \widetilde{H}_{\mu^*}(X;t,q).$$

• Take the coefficient of $x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots$ on both sides:

$$\sum_{\substack{\sigma:\mu o\mathbb{Z}_+\ |\sigma^{-1}(i)|=lpha_i}} q^{\mathsf{inv}(\sigma)} t^{\mathsf{maj}(\sigma)} = \sum_{\substack{
ho:\mu^* o\mathbb{Z}_+\ |
ho^{-1}i|=lpha_i}} q^{\mathsf{maj}(
ho)} t^{\mathsf{inv}(
ho)}.$$

Combinatorial proof: Need a bijection from fillings of µ to fillings of µ* that preserves content and switches inv and maj simultaneously.

$$\sigma = \begin{bmatrix} 6 & 3 \\ 1 & 5 & 7 \\ 2 & 4 & 1 \end{bmatrix}$$

maj is the sum of the maj's of the columns (top to bottom).

• $maj(\sigma) = maj(612) + maj(354) + maj(71) = 1 + 2 + 1 = 4$

$$\sigma = \begin{bmatrix} 6 & 3 \\ 1 & 5 & 7 \\ 2 & 4 & 1 \end{bmatrix}$$

- ▶ $maj(\sigma) = maj(612) + maj(354) + maj(71) = 1 + 2 + 1 = 4$
- Inversions: A pair (a, b) with a to the left of b in a row is usually an inversion if and only if a > b, except if the entry c directly below a has value between a and b then the opposite is true.

$$\sigma = \begin{bmatrix} 6 & 3 \\ 1 & 5 & 7 \\ 2 & 4 & 1 \end{bmatrix}$$

- ▶ $maj(\sigma) = maj(612) + maj(354) + maj(71) = 1 + 2 + 1 = 4$
- Inversions: A pair (a, b) with a to the left of b in a row is usually an inversion if and only if a > b, except if the entry c directly below a has value between a and b then the opposite is true.
- Bottom row:

$$\sigma = \frac{\begin{array}{c|c} 6 & 3 \\ 1 & 5 & 7 \\ \hline 2 & 4 & 1 \end{array}}{}$$

- ▶ $maj(\sigma) = maj(612) + maj(354) + maj(71) = 1 + 2 + 1 = 4$
- Inversions: A pair (a, b) with a to the left of b in a row is usually an inversion if and only if a > b, except if the entry c directly below a has value between a and b then the opposite is true.
- ▶ Bottom row: (2,1)

$$\sigma = \begin{bmatrix} 6 & 3 \\ 1 & 5 & 7 \\ 2 & 4 & 1 \end{bmatrix}$$

- ▶ $maj(\sigma) = maj(612) + maj(354) + maj(71) = 1 + 2 + 1 = 4$
- Inversions: A pair (a, b) with a to the left of b in a row is usually an inversion if and only if a > b, except if the entry c directly below a has value between a and b then the opposite is true.
- Bottom row: (2,1), (4,1)

- $maj(\sigma) = maj(612) + maj(354) + maj(71) = 1 + 2 + 1 = 4$
- Inversions: A pair (a, b) with a to the left of b in a row is usually an inversion if and only if a > b, except if the entry c directly below a has value between a and b then the opposite is true.
- Bottom row: (2,1), (4,1)
- Second row: (1,5)

- ▶ $maj(\sigma) = maj(612) + maj(354) + maj(71) = 1 + 2 + 1 = 4$
- Inversions: A pair (a, b) with a to the left of b in a row is usually an inversion if and only if a > b, except if the entry c directly below a has value between a and b then the opposite is true.
- Bottom row: (2,1), (4,1)
- Second row: (1,5), (1,7)

- ▶ $maj(\sigma) = maj(612) + maj(354) + maj(71) = 1 + 2 + 1 = 4$
- Inversions: A pair (a, b) with a to the left of b in a row is usually an inversion if and only if a > b, except if the entry c directly below a has value between a and b then the opposite is true.
- Bottom row: (2,1), (4,1)
- Second row: (1,5), (1,7)

$$\sigma = \frac{\begin{array}{|c|c|c|c|c|} \hline 6 & 3 \\ \hline 1 & 5 & 7 \\ \hline 2 & 4 & 1 \end{array}}$$

- ▶ $maj(\sigma) = maj(612) + maj(354) + maj(71) = 1 + 2 + 1 = 4$
- Inversions: A pair (a, b) with a to the left of b in a row is usually an inversion if and only if a > b, except if the entry c directly below a has value between a and b then the opposite is true.
- Bottom row: (2,1), (4,1)
- Second row: (1,5), (1,7)
- Top row: (6,3)

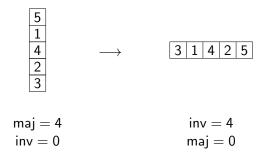
$$\sigma = \begin{bmatrix} 6 & 3 \\ 1 & 5 & 7 \\ 2 & 4 & 1 \end{bmatrix}$$

- ▶ $maj(\sigma) = maj(612) + maj(354) + maj(71) = 1 + 2 + 1 = 4$
- Inversions: A pair (a, b) with a to the left of b in a row is usually an inversion if and only if a > b, except if the entry c directly below a has value between a and b then the opposite is true.
- Bottom row: (2,1), (4,1)
- Second row: (1,5), (1,7)
- ▶ Top row: (6,3)

•
$$inv(\sigma) = 5$$

One-row shapes reduce to words

- If μ = (n) and σ is a filling of μ, then maj(σ) = 0 and inv(σ) = inv(w(σ)) where w(σ) is the reading word of σ.
- Similarly if ρ fills μ^{*} then inv(ρ) = 0 and maj(ρ) = maj(w(σ)).



Result: Hook shapes (G.)

Given a filling σ of a hook shape, define invcode and majcode according to the invcode and majcode of the row and column respectively.

Leftmost 0 of invcode matches rightmost 0 of majcode.

Result: Hook shapes (G.)

Given a filling σ of a hook shape, define invcode and majcode according to the invcode and majcode of the row and column respectively.

- Leftmost 0 of invcode matches rightmost 0 of majcode.
- Now interchange and reverse the two codes!

Hall-Littlewood specialization: q = 0

▶ Hall-Littlewood polynomials: $\widetilde{H}_{\mu}(X; t) = \widetilde{H}_{\mu}(X; 0, t)$

Hall-Littlewood specialization: q = 0

- ► Hall-Littlewood polynomials: $\widetilde{H}_{\mu}(X; t) = \widetilde{H}_{\mu}(X; 0, t)$
- Symmetry problem restricts to fillings of µ with inv = 0 and fillings of µ^{*} with maj = 0. Need generalized Carlitz codes.

Hall-Littlewood specialization: q = 0

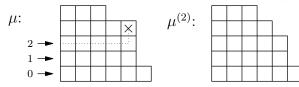
- ► Hall-Littlewood polynomials: $\widetilde{H}_{\mu}(X; t) = \widetilde{H}_{\mu}(X; 0, t)$
- Symmetry problem restricts to fillings of μ with inv = 0 and fillings of μ* with maj = 0. Need generalized Carlitz codes.
- $\widetilde{H}_{\mu}(X; 0, t) = \operatorname{Frob}_{t}(R_{\mu})$ for certain graded S_{n} -modules R_{μ} .

Hall-Littlewood specialization: q = 0

- ► Hall-Littlewood polynomials: $\widetilde{H}_{\mu}(X; t) = \widetilde{H}_{\mu}(X; 0, t)$
- Symmetry problem restricts to fillings of μ with inv = 0 and fillings of μ* with maj = 0. Need generalized Carlitz codes.
- $\widetilde{H}_{\mu}(X; 0, t) = \operatorname{Frob}_{t}(R_{\mu})$ for certain graded S_{n} -modules R_{μ} .
- ► (Garsia, Procesi.) R_µ = C[z₁,..., z_n]/I_µ has a recursively defined monomial basis.

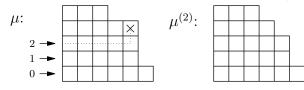
Hall-Littlewood specialization: q = 0

- ► Hall-Littlewood polynomials: $\widetilde{H}_{\mu}(X; t) = \widetilde{H}_{\mu}(X; 0, t)$
- Symmetry problem restricts to fillings of µ with inv = 0 and fillings of µ^{*} with maj = 0. Need generalized Carlitz codes.
- $\widetilde{H}_{\mu}(X; 0, t) = \operatorname{Frob}_{t}(R_{\mu})$ for certain graded S_{n} -modules R_{μ} .
- ► (Garsia, Procesi.) R_µ = C[z₁,..., z_n]/I_µ has a recursively defined monomial basis.
- Basis B_µ given by recursion B_µ = ∐_d z^d_n · B_{µ^(d)} where µ^(d) is the shape formed by removing the corner in column µ_d.



Hall-Littlewood specialization: q = 0

- ► Hall-Littlewood polynomials: $\widetilde{H}_{\mu}(X; t) = \widetilde{H}_{\mu}(X; 0, t)$
- Symmetry problem restricts to fillings of µ with inv = 0 and fillings of µ^{*} with maj = 0. Need generalized Carlitz codes.
- $\widetilde{H}_{\mu}(X; 0, t) = \operatorname{Frob}_{t}(R_{\mu})$ for certain graded S_{n} -modules R_{μ} .
- ► (Garsia, Procesi.) R_µ = C[z₁,..., z_n]/I_µ has a recursively defined monomial basis.
- Basis B_µ given by recursion B_µ = ∐_d z^d_n ⋅ B_{µ^(d)} where µ^(d) is the shape formed by removing the corner in column µ_d.



• Define $C_{\mu} = \{c_1 \cdots c_n : z_n^{c_1} \cdots z_1^{c_n} \in \mathcal{B}_{\mu}\}.$

Generalizing Carlitz

Want weight-preserving bijections

$$\mathcal{F}_{\mu}|_{\mathsf{inv}=0} \xrightarrow{\mathsf{majcode}} \mathcal{C}_{\mu} \xleftarrow{\mathsf{invcode}} \mathcal{F}_{\mu^*}|_{\mathsf{maj}=0}$$

where

$$\mathcal{F}_{\mu}|_{\mathsf{inv}=\mathsf{0}} = \{\sigma: \mu \to \mathbb{Z}_+ \mid \mathsf{inv}(\sigma) = \mathsf{0}\}$$

and

$$\mathcal{F}_{\mu^*}|_{\mathsf{maj}=\mathsf{0}} = \{\rho: \mu^* \to \mathbb{Z}_+ \mid \mathsf{maj}(\rho) = \mathsf{0}\}.$$

Here the *weight* of a code $c \in C_{\mu}$ is $|c| = \sum c_i$, so the maj statistic on the left and the inv statistic on the right will be sent to this weight statistic on C_{μ} .

Let ρ be a filling of μ* having maj(ρ) = 0. Order its entries by size with ties broken in reading order, forming a totally ordered alphabet A = {a₁,..., a_n}.

- Let ρ be a filling of μ* having maj(ρ) = 0. Order its entries by size with ties broken in reading order, forming a totally ordered alphabet A = {a₁,..., a_n}.
- Attacking pair: (a, b) where a > b and b is either to the right of a in the same row, or to the left of a in the row just below.

- Let ρ be a filling of μ* having maj(ρ) = 0. Order its entries by size with ties broken in reading order, forming a totally ordered alphabet A = {a₁,..., a_n}.
- Attacking pair: (a, b) where a > b and b is either to the right of a in the same row, or to the left of a in the row just below.
- Define invcode(ρ) = c₁c₂ ··· c_n where c_i is the number of attacking pairs having a_i as its smaller entry.

$$\rho = \frac{\begin{vmatrix} 3 & 2 \\ 4 & 6 & 1 \\ 5 & 6 & 2 \end{vmatrix}$$

$$A = 12234566$$
invcode(ρ) = 21200100

Theorem (G.)

The map invcode is a weight-preserving bijection

$$\mathsf{invcode}: \mathcal{F}_{\mu^*}|_{\mathsf{maj}=0} \xrightarrow{\sim} \mathcal{C}_{\mu}.$$

Theorem (G.)

The map invcode is a weight-preserving bijection

invcode :
$$\mathcal{F}_{\mu^*}|_{\mathsf{maj}=0} \xrightarrow{\sim} C_{\mu}$$
.

We now have half of the desired bijection:

$$\mathcal{F}_{\mu}|_{\mathsf{inv}=0} \xrightarrow{\mathsf{majcode}} \mathcal{C}_{\mu} \xleftarrow{\mathsf{invcode}} \mathcal{F}_{\mu^*}|_{\mathsf{maj}=0}$$

Theorem (G.)

The map invcode is a weight-preserving bijection

$$\mathsf{invcode}: \mathcal{F}_{\mu^*}|_{\mathsf{maj}=0} \xrightarrow{\sim} \mathcal{C}_{\mu}.$$

We now have half of the desired bijection:

$$\mathcal{F}_{\mu}|_{\mathsf{inv}=0} \xrightarrow{\mathsf{majcode}} \mathcal{C}_{\mu} \xleftarrow{\mathsf{invcode}} \mathcal{F}_{\mu^*}|_{\mathsf{maj}=0}$$

To extend majcode to fillings, want to remove the largest entry and record how much the maj decreases by at each step.

Theorem (G.)

The map invcode is a weight-preserving bijection

$$\mathsf{invcode}: \mathcal{F}_{\mu^*}|_{\mathsf{maj}=0} \xrightarrow{\sim} C_{\mu}.$$

We now have half of the desired bijection:

$$\mathcal{F}_{\mu}|_{\mathsf{inv}=0} \xrightarrow{\mathsf{majcode}} \mathcal{C}_{\mu} \xleftarrow{\mathsf{invcode}} \mathcal{F}_{\mu^*}|_{\mathsf{maj}=0}$$

- To extend majcode to fillings, want to remove the largest entry and record how much the maj decreases by at each step.
- How to remove largest entry from an inversion-free filling σ ?

5		
7	1	2
3	4	6

• The recursion defining \mathcal{B}_{μ} implies that we should remove the largest entry from σ so that, if the major index decreases by d, the resulting shape is $\mu^{(d)}$.

- The recursion defining B_μ implies that we should remove the largest entry from σ so that, if the major index decreases by d, the resulting shape is μ^(d).
- Killpatrick gave a combinatorial proof of this recursion in the language of the charge statistic on words. This translates to a map majcode for fillings σ having all distinct entries! [©]

- The recursion defining \mathcal{B}_{μ} implies that we should remove the largest entry from σ so that, if the major index decreases by d, the resulting shape is $\mu^{(d)}$.
- Killpatrick gave a combinatorial proof of this recursion in the language of the charge statistic on words. This translates to a map majcode for fillings σ having all distinct entries! ⁽ⁱ⁾
- ► Unfortunately, does not extend to repeated entries in any way that preserves relative ordering of entries. ⓒ

- The recursion defining \mathcal{B}_{μ} implies that we should remove the largest entry from σ so that, if the major index decreases by d, the resulting shape is $\mu^{(d)}$.
- Killpatrick gave a combinatorial proof of this recursion in the language of the charge statistic on words. This translates to a map majcode for fillings σ having all distinct entries! [©]
- ► Unfortunately, does not extend to repeated entries in any way that preserves relative ordering of entries. ☺
- Via a different approach, can construct a map majcode for three-row shapes with general entries.

Results

Theorem (G.)

The Carlitz bijection can be extended to prove q, t-symmetry in the following cases:

• Hook shapes: When μ is a hook shape.

Results

Theorem (G.)

The Carlitz bijection can be extended to prove q, t-symmetry in the following cases:

- Hook shapes: When μ is a hook shape.
- q = 0, distinct entries: For fillings with distinct entries (and any shape μ) when one of the statistics is zero.

Results

Theorem (G.)

The Carlitz bijection can be extended to prove q, t-symmetry in the following cases:

- Hook shapes: When μ is a hook shape.
- q = 0, distinct entries: For fillings with distinct entries (and any shape μ) when one of the statistics is zero.
- ▶ q = 0, $\ell(\mu) \leq 3$: When one of the statistics is zero and μ has at most three parts, showing that

$$\widetilde{H}_{\mu}(X;0,t)=\widetilde{H}_{\mu^*}(X;t,0)$$

for such shapes.

Acknowledgments

 Thanks to Mark Haiman and Angela Hicks for their help and feedback.

THANK YOU!