Asynchronously automatic languages and groups

Maria Monks
mm&30Qcam.ac.uk

January 1, 2011

Abstract
Let A be a finite alphabet and let L C (A*)" be an n-variable language over A. We say that L is
regular if it is the language accepted by a synchronous n-tape finite state automaton, it is quasi-regular
if it is accepted by an asynchronous n-tape automaton, and it is weakly regular if it is accepted by a
non-deterministic asynchronous n-tape automaton. We investigate the closure properties of the classes of
regular, quasi-regular, and weakly regular languages under first-order logic, and apply these observations
to an open decidability problem in automatic group theory.

1 Introduction

A finite state automaton is a machine that reads a string of letters over some finite alphabet one letter at a
time, and either accepts or rejects the string after reading it. It has a finite set of internal states, some of
which are designated “start states,” some of which are designated “accept states,” and some may be both
or neither. The string of letters is written on a tape that is fed to the machine. The machine then reads
the letters one at a time from left to right, possily changing states at each step, where the next state is
determined by the current state and the letter being read. When it reaches the end of the string, if the
machine is in an accept state, the string is accepted, and otherwise the string is rejected.

There are several different ways to generalize finite state automata to machines that read n tapes at
once for some n > 1, and either accept or reject the entire n-tuple of strings written on the tapes. A
synchronous n-tape automaton reads all n tapes simultaneously and at the same speed. An asynchronous
n-tape automaton reads from one tape at a time, and its current state determines which tape it reads from
next. A non-deterministic asynchronous n-tape automaton has its choice of several possible sets of tapes to
read from at each step, and reads one letter from each of those tapes before moving to a next state.

The set of accepted strings or n-tuples of strings is called the language accepted by the automaton. In
general, an n-variable language over a finite alphabet A is any subset of (A*)™, where A* is the set of finite
strings over A. A language is regular if it is accepted by a synchronous automaton, it is quasi-regular if it
is accepted by an asynchronous automaton, and it is weakly reqular if it is accepted by a non-deterministic
asynchronous automaton.

Regular languages are well studied throughout the literature (see [4] for an introduction to the topic), but
quasi-regular and weakly regular languages are less understood. In fact, several different definitions of each
notion have appeared throughout the literature ([1], [3], [4], [6].) Furthermore, while the relations defined by
regular languages are closed under first-order logical operators (union (V), intersection (A), complementation
(=), and projection (3)), we shall see in section 3 that this is not true of quasi-regular or weakly regular
languages.

Regular and quasi-regular languages are commonly used to study finitely presented groups, by interpreting
a string of generators as a product of group elements. We say that a group G with a finite set A of generators
is automatic if there is a regular language L over A that represents every element of G exactly once, along
with a collection of two-tape multiplier automata M,, where x ranges over A and the empty string, that
accept the languages L, of pairs of words (wq,ws) from L for which w2 and ws represent the same element
of G. Similarly, G is asynchronously automatic if we allow the multiplier automata to be asynchronous.

Automatic groups naturally arise in the context of the well-known word problem for finitely presented
groups, that is, the algorithmic problem of determining whether a given string of generators represents the
identity element. The word problem is decidable for both automatic and asynchronously automatic groups,
in quadratic time for the former and in exponential time for the latter [1]. It is therefore of interest to
understand and classify automatic and asynchronously automatic groups and their underlying automata.

In this paper, we investigate the properties of quasi-regular and weakly regular languages and their use in
automatic group theory. In section 2, we unify several of the notions of asynchronous and non-deterministic
asynchronous automata that have appeared throughout the literature. In section 3, we investigate the closure
properties of each class of languages under first order logical operators. In section 4, we apply our results to
the problem of recovering an asynchronously automatic group from its collection of automata, posed in [1].

2 Classes of languages defined by automata

Throughout this section, A is a finite set called the alphabet, and we write A* to denote the set of all (possibly
empty) strings, or words, of letters in A. A language over A is any subset of A*.

2.1 One-tape regular languages

Given languages L and M over A, let L* denote the set of all strings formed by concatenating a finite
sequence of elements of L, and let LM denote the language consisting of all strings of the form Im where
le Land me M.

Definition. The class of regular languages over A is the smallest class of languages over A that:
e contains the empty language,
e contains the languages {z} for each x € A, and
e is closed under *, concatenation, union, and intersection.

We can alternatively define regular languages using finite state automata. For any set S, let P(S) denote
the power set of S.

Definition. A (non-deterministic) finite state automaton over an alphabet A is a quadruple (S, A, S, S§),
where:

e S is a finite set of states,
o A: S x(AU{e}) — P(S) is the transition function,
e Sy C S is the set of initial states, and

e Sy C S is the set of accept states.

Figure 1: A non-deterministic finite state automaton (at left) and a partial deterministic finite state au-
tomaton (at right) that each accept the language {xy™ | n € N} U {zz" | n € N}. Start states are indicated
by a darkened node, and accept states are circled.

The state diagram of a non-deterministic finite state automaton (S, A, So, Sy) is the edge-labeled directed
graph with vertex set S and whose directed edges are the pairs (s,t) of states for which ¢t € A(s, z) for some
x € AU {e}. We label such an edge by the letter z. We circle the accept states, and the remaining states
are called failure states. We use a darkened node to indicate a start state. (See Figure 1.)

The language L(W) accepted by a finite state automaton W is the set of all words w = xj29-- -2,
for which there is a sequence of states sg, $1, 52, .., S, with sg € So, s, € Sy, and s; € A(s;_1,z;—1) for
t=1,...,n. In terms of the state diagram, a word w = zyxs - - - ,, is accepted by W (that is, w € L(W)) if
and only if there is a path of edges, starting at a start state and ending at an accept state, whose labels are
r1i,...,T, in that order.

It is often useful to consider the finite state automata for which the next state is completely determined
by the current state and the letter being read.

Definition. A finite state automaton (S, A, Sy, Sy) over an alphabet A is partial deterministic if there is
a unique start state so € Sy and for each state s € S and letter € A, we have that |A(s,z)| < 1 and
|A(s,€)] = 0. The automaton is deterministic if |[A(s,z)| =1 for all s € S and = € A.

In terms of the state diagram, a partial deterministic automaton has a unique start state, no e-arrows,
and at most one xz-arrow starting from each state. It is deterministic if there is exactly one x-arrow starting
from each state.

A well known theorem by Kleene, Rabin, and Scott (see [1], [4]) states that all of these notions are
equivalent:

Theorem 1 (Kleene, Rabin, Scott). Let L be a language over an alphabet A. The following are equivalent:
e L is accepted by a deterministic finite state automaton.
e L is accepted by a partial deterministic finite state automaton.
e L is accepted by a non-deterministic finite state automaton.

e L is a regular language over A.

2.2 Multi-tape regular languages

The notion of a finite state automaton can be generalized to allow multiple tapes to be read by the machine
simultaneously. In this section, we follow the conventions in [1].

To account for the fact that the word written on one tape may be longer than the word written on
another, we introduce a padding symbol $ that we use to pad the shorter strings in order to obtain strings
of the same length.

Definition. The n-tape padded alphabet over A is the set

(AU{$H"\{(5,8,....9)}.
We denote the n-tape padded alphabet by A% when n is understood.
For any word w, let |w| denote the number of letters in w.

Definition. Given an n-tuple of strings w = (wy, ..., w,), let m = max; |w;|, and for k = 1,...,m define
Tk to be the n-tuple consisting of the kth letters of each w;, where the kth letter is taken to be a padding
symbol $ if k& > |w;|. Then the padded string associated with w is the word &y ---T,,. If L is any set of
n-tuples of strings over A, the associated padded extension over A%, denoted L%, is the language consisting
of the padded strings associated with the elements of L.

Example. The padded string associated with (aa, abbe, cab) is the sequence of triples (a, a, ¢), (a, b, a), ($,b,0), ($, ¢, b).
Note that concatenating these triples along each coordinate results in the triple of padded words (aa$$, abbe, cab$).

Notice that, given a language K consisting of only padded strings, we may remove the $ symbols from
the corresponding n-tuples of padded words to obtain the unique set L of n-tuples of words over A for which
K =15

We now have the tools to define an n-tape finite state automaton.

Definition. An n-tape deterministic finite state automaton over A is a deterministic finite state automaton
W over the padded alphabet A% that only accepts padded strings. If the language K consisting of the padded
strings accepted by W is equal to L%, then we say that W accepts the language L, and that L is an n-tape
reqular language over A.

Notice that, by Theorem 1, the definition of n-tape regular language agrees with Definition 2.1 in the
case n = 1.

2.3 Quasi-regular languages

The n-tape automata described above read all n tapes in parallel, at the same speed. For this reason, we
say that such automata are synchronous. We now consider asynchronous automata, which read from one
tape at a time, and may switch tapes several times in the process.

Two equivalent definitions of two-tape automata have appeared in the literature independently. The
notion was first introduced in [4]:

Definition. A two-tape asynchronous automaton over an alphabet A is a deterministic automaton over the
alphabet A U {$}, along with a partition of the state set into two sets Sy and Sg, called the left and right
state sets.

Define a shuffle of an n-tuple of words (w,...,w,) over an alphabet A is an ordering of all the letters
of wy,...,w, that respects the ordering in each of the words w;. For instance, two valid shuffles of (abc, bd)
are abbed and badbe (the shuffle abbed also carries information about which b came from the left or right
component, but we use the term ‘shuffle’ loosely to refer to either the mapping of the letters to their position,
or to the word spelled by the shuffle). Also, for any word w, define w$ to be the word formed by appending
the symbol $ at the end of the string w.

The language L(W) accepted by an asynchronous automaton W is the set of all pairs (u,v) of words
over A such that there is some (unique) shuffle of (u$,v$) that is accepted by the underlying deterministic
automaton and has the property that the automaton must be in a state in S, to read a letter from u and in
a state in Si to read a letter from wv.

In [1], asynchronous automata are defined as follows.

Definition. A two-tape asynchronous automaton over an alphabet A is a partial deterministic finite state
automaton W over the language AU {$}, along with a partition of the set of states into five subsets S, Sg,
5%, 8%, and S%, such that the following hold:

e S% contains exactly one element, s, which is also the unique accept state of the automaton.
e The start state of W is in either S, or Sg.

e An arrow is labeled by $ if and only if it maps a state in X to a state in Y, where the pair (X,Y) is
one of (S, S%), (Sr,S), (S§,5%), or (5%, 5%).

e Arrows starting in Sp can only end in Sy, Sg, or S%.
e Arrows starting in Sg can only end in Sp, Sg, or Sf.
e Arrows starting in Si can only end in Si or S%.
e Arrows starting in S% can only end in Sf—i or S%.

e No arrows start in S%.

In this definition, the language accepted by an asynchronous automaton is the set of all pairs of words
(u,v) such that there is a (unique) shuffle of (u$,v$) accepted by the underlying deterministic automaton.
Following a $-arrow from, say, S, to Sfé indicates that we have reached the end of the left tape and now
only need to read the right tape until we reach another $.

In order to distinguish between these two definitions, we call the former a semi-sorted asynchronous
automaton, and the latter a sorted asynchronous automaton, since the states of the former are only sorted
based on the tape being read, while the states of the latter are further sorted based on the number of $
symbols the automaton has read so far.

We can easily generalize each of these definitions to n tapes. For simplicity, we write [n] to denote the
set {1,2,...,n}.

Definition. An n-tape semi-sorted asynchronous automaton over an alphabet A is a partial deterministic
finite state automaton over the alphabet AL{$}, along with a partition of the state set into n sets Sy,...,S,.

Definition. An n-tape sorted asynchronous automaton over an alphabet A is a partial deterministic finite
state automaton W over the language A U {$}, along with a partition of the set of states into subsets of the

form SY where V is a proper subset of [n] and i € [n]\V, and a final subset Sj[cnh such that the following
hold:

The start state of W is in S? for some 1.

An arrow is labeled by $ if and only if it maps a state in X to a state in Y, where the pair (X,Y) is
of the form (S}, SJU) with j #iand U =V Ui.

e Arrows not labeled by $ that start in .S} must end in SJV for some j € V.
° S)[c"] contains exactly one element, s%, which is also the unique accept state of the automaton.

e No arrows start in S[f"].
We show that these two definitions are equivalent.
Theorem 2. Sorted and semi-sorted asynchronous automata accept the same class of languages.

Proof. Let W be an n-tape sorted asynchronous automaton with (partial) transition function A and with
state sets S} and S)[cn] as in the definition. For i = 1,...,n — 1, define

Ti=Js"
14

where V' ranges over the proper subsets of [n] not containing i. Also define

— v [n]
T, = (U Sy > us;
|4

where V' ranges over the proper subsets of [n] not containing n. Then we see that the partition {7;} makes
W into a semi-sorted asynchronous automaton M with L(M) = L(W).

Conversely, let M be an n-tape semi-sorted asynchronous automaton, with state sets T;, i = 1,...,n.
We construct a sorted asynchronous automaton W as follows. We first construct 2" — 1 exact copies of each
T;, labeled SY for each proper subset V of {1,2,...,n}, inheriting any arrows that start and end in 7;. For
any set V and any two distinct indices 4,7 ¢ V, we draw arrows between states s € S} and t € S]V if and
only if the corresponding states in T; and T are connected in M.

The quality of being a start state or accept state is not inherited, with one exception: if the start state
of M is in T;, we define the corresponding element of S? to be the start state of W. We also construct a

new accept state s° and define Sj{cl""’”} = {s%}.
We now perform the following operations in order:

e For each i € [n], let V; = [n]\{¢}. If an arrow labeled by $ in M starts at a state s; € T; and ends at
an accept state of W, draw a new arrow in W labeled by $ from the corresponding state in SZV to s°%.

e If an arrow labeled by $ in M starts in 7; and ends in 7}, then for each V not containing ¢ or j, draw

a new arrow in W labeled by $ starting and ending at the corresponding states in S} and S;/U{i}.
e Remove any $-arrow in W that both starts and ends in any of the sets S} .

These operations guarantee that when we are done reading the ith tape and reach the corresponding
$-arrow, the next state is in some Sj‘-/ where V' contains ¢. This makes the resulting automaton W into a
sorted asynchronous automaton that accepts the same language as M. This completes the proof.]

SL S}%

Figure 2: A sorted asynchronous automaton that accepts the language L = {(z",2?") | n € N}. The sets
Sr, Sr, Si, S%, and S% are outlined.

We call a language accepted by a (sorted or unsorted) asynchronous automaton a quasi-regular language.
The class of quasi-regular languages is strictly larger than the class of regular languages. To illustrate this,
we first prove a generalization of the well-known pumping lemma for n-tape regular languages.

Lemma 1. Let L be a regular n-variable language over an alphabet A. There is a positive integer p such
that for any n-tuple of words w = (wy,...,w,) € L with max |w;| > p, there are nonnegative integers k > 1
and 1, with k+1 < m, such that if we write each w; as u;m;v; where x; consists of the kth through (k4 1)th
letters of w;, then we have

(uymivy, ..., upmlv,) € L

for all v > 1. Moreover, each substring x; either consists entirely of letters in A or consists entirely of $
symbols.

Proof. Let W be an n-tape finite state automaton accepting L, and let p be the number of states of W.
Then if W = (wy,...,wy,) is in L such that max|w;| > p, the path of arrows traced out on W that read w
visits at least p + 1 states, and so some state must be visited more than once. In particular, there is a loop
of some length [in the path, that starts at the kth arrow in the path. For each ¢ = 1,... n, let m; denote
the sequence of letters appearing in the ith coordinate along this loop.

We may now form new accepted paths by repeating this loop r times before continuing along the path.
Thus, if we write w; = u;m;v; then (uymiovy,. .., u,mhv,) is also accepted by W for any r > 1.

Finally, if m; consists of some letters and some $ symbols, we would obtain an accepted n-tuple of words
which does not correspond to a padded string, which contradicts the definition of an n-tape finite state
automaton. Thus each m; either consists entirely of letters in A or consists entirely of $ symbols.]

We now provide an example demonstrating that not all quasi-regular languages are regular.

Example. The two-variable language L = {(2",2?") | n € N} is quasi-regular but not regular.

Proof. Since L is accepted by the sorted asynchronous automaton shown in Figure 2, L is quasi-regular.
Now, suppose L were regular. By Lemma 1 there are nonnegative integers k& and [such that we may

repeat the kth to (k + I)th letters of each component any number of times to obtain new elements of L, as

long as either 1 < k < k41 < n (when both subwords consist only of z’s) or n +1 < k < k+1 < 2n (when

the left subword counsists only of $ symbols and the right consists only of z’s). We consider these two cases
separately.

If1 <k <k+1<n, the words (x”"‘r(l‘*‘l),x%”(“‘l)) are in L for each r > 0 by Lemma 1, but since
I+1>1wehave2(n+r(l+1))=2n+2r(l4+1)#2n+r(l+1) for »r > 0. Thus these words are not in L,
a contradiction.

Ifn+1<k<k+1<2n, the words (x”,zQ”J”(l“)) are in L for r > 0, again a contradiction since
2n < 2n+r(l+1) for r > 0.

It follows that L is not regular.]

2.4 Weakly regular languages

We now study mon-deterministic asynchronous automata, which may read from any of several possible
subcollections of the tapes, called filters, at each step, and has a choice of several possible next states at each
transition. In [3], Khoussainov and Nerode defined these automata as follows.

Definition. Let E = P (P([n])\{0}), and call E the set of filters on n tapes. Let A be a finite alphabet,
and let A% = (AU {$}\{($,$,...,$)}) be the associated padded alphabet. Then an n-tape non-deterministic
filter asynchronous automaton, or FAA, is a quadruple (S, Sy, A, Sy) where:

e S is a finite set of states,

e Sy C S is the set of initial states,

Sy C S is the set of accept states, and

o A:Sx A% — P(S) x E is a transition function that, given a state and a letter over A$ | returns a set
of next states along with a set of filters, and satisfies:

e Terminus property: For all & = (0,...,0,) € A® and for all s € S, if 0; = $ and the set of next
states given by A(s, @) is nonempty, then ¢ is not in any of the filters given by A(s,7).

An n-tuple of words is accepted by a FAA if the following condition is satisfied. We write the n words
in question on n tapes, starting in a start state of W, we choose a valid filter as given by the transition
function, move one position to the right along precisely those tapes whose index is in that filter, and non-
deterministically choose one of the next possible states as the next state. If this process can be repeated
until the end of every tape is reached, and the final state of this process is an accept state, then the tuple is
accepted by W.

Formally, an n-tuple of words W = (w1,...,w,) is accepted by W if and only if there is a sequence of
states sg, s1,...,5f where sg is a start state and sy is an accept state, along with an associated sequence
of filters xo, ..., X f—1, with the following properties. For each k = 0,..., f, let o3 be the n-tuple whose ith
coordinate is the rth entry of w;, where r is the total number of filters of xq,..., xx containing 7. Then if
for all k, A(sg,0%) = (S, X) where S contains s11 and X contains xy, the n-tuple w is accepted by W.

Remark. This is a slight modification of the original definition of Khoussainov and Nerode in [3], which
does not include the condition that the state set of A(s,@) is nonempty in the terminus property. Note that,
in a FAA, if A(s,7) = (0, X) then we cannot make a move starting at s with input @, and so the content of
X does not matter in determining its accepted language. Thus, the two definitions are equivalent. We use
our modified version throughout.

Another definition of non-deterministic asynchronous automata in the two-tape case appeared indepen-
dently in [6]. Shapiro defined a two-tape non-deterministic asynchronous automaton to be a non-deterministic
automaton along with a partition of the set of states into two sets. We may generalize Shapiro’s definition
to n tapes as follows.

Definition. An n-tape non-deterministic semi-sorted asynchronous automaton (NSAA) over an alphabet
A is a non-deterministic finite state automaton over A LI § along with a partition of the set of states into n
sets S1,...,5,.

We say that an n-tuple of words W = (wq, ..., w,) is accepted by a NSAA W with transition function A
if there is a shuffle u = wyuz - = Uy, | 4. 4w, |+n Of (W18, ..., w0, 8) and a path of states so, ..., S|w, |+...4w,|+n
in W, with so a start state and s, 4.4 |w,|+n an accept state, such that the arrow between s; and s; + 1
is labeled by w;4+1, and if u;11 is a letter from wj, then s; is in the state set S;. In other words, if W is in a
state in S, it will read the next letter from the jth tape.

We will show that the class of languages (n-tuple relations) accepted by FAA’s is identical to the class of
languages accepted by NSAA’s. In order to do so, we first define yet another type of automaton that accepts
the same class of languages.

Definition. A deterministic-filter (non-deterministic) asynchronous automaton, or DFAA, is a FAA with
the property that, in any given state, there is at most one possible filter to choose from. In other words, if
A(s,7) = (S, X) then | X| < 1.

We now show that FAA’s; DFAA’s, and NSAA’s all have the same class of accepted languages.
Theorem 3. Let L be an n-variable language over a finite alphabet A. The following are equivalent.

o L is the accepted language of a filter asynchronous automaton (FAA).

e L is the accepted language of a deterministic filter asynchronous automaton (DFAA).

e L is the accepted language of a non-deterministic semi-sorted asynchronous automaton (NSAA).

Proof. Let W = (5,5, A, Sf) be a FAA. We construct a DFAA W’ accepting the same language as W.
Define the state set of W’ to be

§'= 85 x (P([n)\0) = {(s,x) | s € S and x € P([n])\{0}}.

Define the set of start states Sj) to be the set of states (sg,x) € S’ such that sy € Sy, and define the set of
final states S’ to be the set of states (sy,x) € S such that s; € Sy. Finally, define the transition function
A’ by

({(t, p) | t in the set of states of A(s,7)}, {x}) 1if x is a filter of A(s,7)

/ _
Allsx),7) = {({}, {x}) otherwise
In other words, suppose W' is in the state (s, x) and reads an n-tuple 7. If x is a possible filter of W at
state s and input @, and ¢ a possible next state of W, then W’ may change to the state (¢, 1) where p is any
valid filter. Furthermore, W’ moves to the next letter in precisely those tapes indexed by the filter x.
We now show that W’ is a well-defined FAA; since there is a unique filter to choose from in any given
state, it then follows that it is a DFAA.

It is clear that W' satisfies all the properties of a FAA besides the terminus property. To show that A’
satisfies the terminus property, let (s, x) be any state of W’ and let @ = (071, ..., 0,) be any n-tuple of letters
over A. First, suppose y is in the set of possible filters of A(s, 7). Then for any ¢ for which o; = $, we have
that ¢ & x since W is a FAA. Thus ¢ does not occur in the set of possible filters, namely, {x}, of A’((s, x), 7).

Otherwise, if x is not in the set of possible filters of A(s,7), then the state set of A’((s, x),7) is empty,
and so the terminus property is trivially satisfied.

We now show that W’ accepts the same language as W. Let w be an accepted n-tuple of words in W.
Then there is a path of filters x1,...,xs that one follows from a start state sy to a final (accept) state s;.
Let o',...,07 be the n-tuples of letters that are read at each step along the way.

Consider the path of states (so, x1), (51, X2), -+, (5, X¢) in W’. By our definition of ¢!, the automaton
W' may read o' with filter ; to move from state (sg,x1) to (s1, x2), at which point it reads 2, and so on,
it has read all of w and reaches the accept state (s, xy). Thus every word accepted by W is accepted by
w’.

Conversely, suppose (s, X1), (51, X2),-- -, (sf, xy) is any path of states in W', ending on an accept state
(sf,xy), that defines the sequence o', ..., o of n-tuples of letters being read by the corresponding arrows.
Then there is a path between the states so,...,s; with associated filters x1,...,xs that is accepted by W
and reads off precisely these n-tuples. Thus every word accepted by W' is accepted by W.

It follows that every language accepted by a FAA is also accepted by an DFAA. Note that every DFAA
is also a FAA by definition, and so every DFAA language is also accepted by a FAA. This completes the first
equivalence.

Now, let V' be an arbitrary DFAA. We construct a NSAA P that accepts the same language as V. To
do so, we first note that the states of V' can be sorted into sets based on their associated filter x.

We can represent V as a graph with the states as nodes and with arrows between states labeled by
n-tuples of letters to indicate the transition diagram, where the nodes are sorted into 2™ — 1 disjoint sets,
one for each filter y. Let S; be the set whose filter consists only of the tape i. For each state 7' = (s, x) that
is not in any .S;, we perform the following operation:

1. Let ji,...,Jr be the elements of the filter x of 7. Then we move 7" to the set S;, .

2. For each arrow starting at 7', say T — 1" labeled by o, add new states T5, ..., T} to the sets Sj,,..., S},
respectively, and draw arrows labeled by o from T to T5, from T3 to T3, etc., and then from T}, to T”.

Once this has been done, we replace the label ¢ on any arrow starting in S; with the label o;, for it is
only this letter which is allowed through. It is clear that the resulting automaton P accepts the same set of
n-tuples of words as V. It follows that every language accepted by a DFAA is also accepted by a NSAA.

Finally, given a NSAA V| we may interpret it as a DFAA by making the associated filter of each state
in S; be the filter {i}, and re-labeling the arrows starting in .S; with n-tuples that match in the ith position
for each . Thus every language accepted by a NSAA is also accepted by a DFAA. O

3 Closure properties

A regular predicate over an alphabet A is any statement P(x1,...,2,) such that the set of tuples of words
(z;) in A™ for which P holds is a regular language. We can similarly define quasi-regular and weakly regular
predicates. It is known that regular predicates are closed under first-order predicate logic. We now investigate
the closure properties of quasi-regular and weakly regular predicates.

Proposition 1. In the following, let P(xy,...,2,) and Q(x1,...,x,) be n-variable quasi-regular predicates.

10

(a) The predicate =P(x1,...,xy,) is quasi-reqular.

(b) The predicate P(x1,...,xn) A Q(x1,...,xy,) is not necessarily quasi-reqular.

(¢) The predicate P(x1,...,x,)V Q(x1,...,x,) is not necessarily quasi-reqular.

(d) The predicate (3x1)P (1, ..., xy,) is weakly reqular, but not necessarily quasi-reqular.
(e) The predicate (Va1)P(x1,...,x,) is not necessarily quasi-regular.

(f) If n =2, the predicate (3x1)P(x1,x2) is reqular.

(9) If n =2, the predicate (Vx1)P(x1,x2) is regular.

In summary, n-variable quasi-regular predicates (languages) are closed under — (complementation), but
not under V (union), A (intersection), 3 (projection) or V (complementation of the projection of the comple-
ment). In the case n = 2, the application of 3 or V yields a 1-variable regular language.

Proof. See [1] for a proof of claims (a), (f), and (g).

For (b), recall from Example 2.3 that the language {2™, 22"} is quasi-regular. Similarly, the language
{x?" 2"} is quasi-regular. We show that their union L := {(z",2?")} U {(2®",2")} is not quasi-regular.

Assume to the contrary that there is a semi-sorted deterministic asynchronous automaton M accepting
L. Since M has a finite number of states and the lengths of the paths accepting pairs of the form (27, 2%")
become arbitrarily large, there must exist a cycle in its state diagram. Since no cycle can contain a $ symbol,
the cycle must consist entirely of edges labeled by x. Tracing around this cycle will yield a word of the form
(2%, 2") for some s and t.

Choose N > 0 large enough so that the path accepting (zVV,z
We can repeat the cycle k times, so that M accepts all words of the form (
integers k. It follows from the definition of L that ¢t = 2s > 0.

Similarly, there exists a cycle of the form (z*,z") where u = 2v > 0. These cycles are clearly distinct,
and must occur on a path from the start vertex that does not contain any $ symbols. But since M is
deterministic, this is impossible, and we have a contradiction.

To prove (c), assume to the contrary that RAS is quasi-regular for any n-variable quasi-regular predicates
R and S. Note that PV Q is equivalent to =(=P A =@Q). Since =P and —@) are quasi-regular, by our
assumption we have that =P A =@ is quasi-regular, and hence —(=P A —Q) is quasi-regular as well. Thus
PV @ is necessarily quasi-regular, contradicting (b).

For (d), we first show that the predicate is weakly regular. Let M be a semi-sorted asynchronous
automaton accepting the relation defined by P, with state sets Si,...,5,. Then we can replace all arrows
starting in the state set S; corresponding to x; by e-arrows and merge the states of S; with Sy to obtain a
NSAA that accepts (Fz1)P (1, ..., Ty).

To show (Jz1)P(x1,. .., x,) is not necessarily quasi-regular, let A = {x,y, 2}, and let L = {(y, 2", 2**)} U
{(z,22",2™)}, where n ranges over the nonnegative integers. We show that the predicate (a,b,c) € L is
a quasi-regular predicate over A, but its projection 3a,(a,b,c) € L is not quasi-regular. A semi-sorted
asynchronous automaton accepting the language L is shown in Figure 3. Now, the predicate 3a, (a,b,c) € L
defines the two-variable language {(x™,2?")} U {(2?",2™)}, which is not quasi-regular, by our example for

(b)

2N traverses this cycle at least once.

apNHRs 22N+kE) for nonnegative

For (e), we note that (3x1)P(z1,...,x,) is equivalent to —(Vay)(=P(x1,...,2y)). Thus, if V maps
quasi-regular predicates to quasi-regular predicates, it would follow that 3 does as well by closure under
complementation, contradicting (d). Thus V does not preserve quasi-regularity.]

11

S1

Yy Z
$I I$

S2

Tl T3 $
SR Y
z
$

Figure 3: A semi-sorted asynchronous automaton accepting the language {(y, z™, #2")} U {(z, 2*",2™)}.

X

In part (d) of the above proposition, we found that applying the 3 operator to a quasi-regular predicate
yields a weakly regular predicate. We now show that every weakly regular predicate can be obtained in this
way.

Theorem 4. Suppose P(z1,...,x,) is an n-variable weakly reqular predicate. Then there is an (n + 1)-
variable quasi-reqular predicate Q(xo, ..., x,) for which

P(z1,...,xn) <= (320)Q(z0,...,Tn).

Proof. Let L denote the language defined by P(xi,...,x,). Let M be a non-deterministic semi-sorted
asynchronous automaton (NSAA) over an alphabet A = {01, ...,0,}, with state sets S,...,S,, accepting
the language L. We construct from M a semi-sorted asynchronous automaton M", with an additional state
set Sp, as follows.

Let k be the number of e-arrows appearing in the state diagram of n. We choose any ordering of the
e-arrows, and perform the following operation on the ith € arrow for ¢ = 1,..., k. We create a new state s;
in the new state set Sy, and make s; an accept state or start state if and only if s is an accept state or start
state, respectively. Suppose the € arrow begins in a state r1 and ends in a state ro defined by P(z1,...,z,).
For each arrow « from any other state ¢ into r1, we draw a new arrow with the same label as « from ¢ to s;,
and an arrow labeled by a new letter o,,4; from s; to 7. Then, we remove the e arrow.

We now have a new NSAA M’ over an extended alphabet {071, ..., 0,4} having no e-arrows (here k is the
number of e-arrows in the original automaton M). Note that we have simply re-routed every path through
the original e-arrows with the use of extra letters appearing in the 0th component, and so the n-tuples of
words appearing as the last n words in an (n + 1)-tuple accepted by M’ are precisely those n-tuples in L.
Thus, M’ accepts a language L’ whose projection onto the last n variables is the language L.

Next, we modify M’ to form a semi-sorted asynchronous automaton M”, accepting another language L”
whose projection onto the last n variables is also L. Let j be the total number of arrows o of M such that
the state s at which « begins has at least one more arrow with the same label as « beginning at s. (Notice
that s cannot lie in Sy, since in our construction above, every arrow starting in Sy was given a unique label.)
Choose an ordering as, ..., a; of these arrows.

12

For each state s having two arrows of the same label o beginning at s, we create a new state s’ in Sp.
We make s’ an accept state or start state if and only if s is an accept state or start state, respectively. Next,
we draw an arrow labeled by o from s to s’. Now, each arrow labeled by o starting at s is one of the arrows
a; by construction. Suppose «; ends at the state s;. We draw an arrow from s’ to s; labeled by a new letter
On+k+i, and we remove the arrow «;. Notice that there is now exactly one arrow labeled ¢ beginning at s,
and by following the arrow into Sy, we can come out to any of the states that o originally pointed to in M’.
Thus, we have re-routed the redundant arrows through a single arrow into Sy, without changing any of the
nonzero components of our accepted paths.

We now have an automaton with no e-arrows and at most one arrow of each label starting from a given
state. Thus, to make it partial deterministic, we only need to consider the possibility that there are multiple
start states. Let t1,...,t, be the start states of the automaton. We construct a new start state r in Sp,
and for each ¢; we draw an arrow from 7 to ¢; labeled by a new letter 0,4 ;4+;. We then make the states
t; into non-start states. This yields a semi-sorted asynchronous automaton M’ accepting a quasi-regular

language L”, such that (3x0)(x1,...,2,) € L” defines the language L. O
Proposition 2. In the following, let P(x1,...,x,) and Q(x1,. .., x,) be n-variable weakly reqular predicates.
(a) The predicate —P(x1,...,x,) is not necessarily weakly regqular.

(b) The predicate P(z1,...,2,) V Q(x1,...,xy,) is weakly reqular.

(c) The predicate P(x1,...,2,) A Q(x1,...,x,) is not necessarily weakly regular.

(d) The predicate (3x1)P(x1,...,x,) is weakly reqular.

(
(
)
)

(e) The predicate (Va1)P(x1,...,2,) is not necessarily weakly regular.

(f) If n =2, the predicate (3x1)P(x1,x2) is reqular.

Proof. Claim (f) is shown in [6].

We first prove (b). Given two n-variable weakly regular languages, let M and N be corresponding
non-deterministic semi-sorted asynchronous automata (NSAA’s), with state sets S1,...,S, and T1,...,T),
respectively. Then the disjoint union of their state diagrams, with state sets S; U7, ..., S, UT,, is another
NSAA that accepts the union of the two weakly regular languages.

For (c), consider the two-variable languages

L = {(a"ya" 2 ya")

and

2 = {(a"ya™, a"ya")}.
First, note that each of Ly and L, is a weakly regular language; in fact, they are quasi-regular, with the state
diagram of a semi-sorted asynchronous automaton accepting L; shown in Figure 4. We can easily modify
the diagram to see that Lo is quasi-regular as well.

Now, assume for contradiction that the language L; N Ly = {(z"yz™, 2"ya™)} is weakly regular. By
(f), it follows that the one-variable language {(z"yx™)} is regular. But the pumping lemma shows that this
cannot be regular, and so we have a contradiction. This proves (c).

We can now prove (a). Suppose that the complement of any weakly regular language is weakly regular.
Then using the identity PAQ = —((—P)V (—Q)) and the fact that weakly regular languages are closed under
union, we have that they are closed under intersection, contradicting (c).

13

Sy y

Figure 4: A semi-sorted asynchronous automaton accepting the language {(z"yz™, x*ya")}.

For (d), let M be a NSAA accepting the language defined by P, with state sets Si,...,S,. Then we can
replace all arrows starting in the state set S; corresponding to x; by e-arrows and merge the states of Sp
with Sy to obtain a NSAA that accepts the language defined by (3z1)P(z1, ..., %)

Finally, for part (e), we use the languages L and Lo defined above. Since they are quasi-regular, their
complements L§ and L§ are quasi-regular as well. Thus, the language L := L§ U L§ is weakly regular by (b).
However, its complement, L¢ = (L§ U L) = Ly N Lo, is not weakly regular, as above.

By Theorem 4, there is a quasi-regular predicate R(u, v, w) for which (Ju)R(u,v,w) defines the language
L. Thus, the negation of the statement, —(Ju)R(u,v,w) is not weakly regular. This statement can be
rewritten as (Vu)—R(u,v,w). Since quasi-regular predicates are closed under negation, it follows that there is
a quasi-regular (and hence weakly regular) predicate P(u, v, w), namely, =R (u, v, w), for which (Vu)P(u, v, w)
is not weakly regular. This completes the proof. O

4 Asynchronously automatic groups

4.1 Background

We first give some background on finitely presented and automatic groups, following the conventions and
terminology in [1].

Let A be a finite set along with a pairing of its elements, so that paired elements are called inverses of
each other. If z € A, we write 27! € A to denote the formal inverse of z in A. (Note that an element may
be its own inverse.) Then the free group on A, denoted F(A), is the group under concatenation of all words
over A that contain no adjacent inverse generators.

A finite presentation of a group G consists of a finite inverse-closed set A C G called the generating set
or the set of generators, along with a finite set R C A* called the set of relators, and such that if N denotes
the smallest normal subgroup of F'(A) containing R, then F(A)/N = G. In this case, we write G = (A | R).

Given a finite presentation G = (A | R) and a word w € A*, we write @ to denote the element of G that
w represents, that is, when we interpret concatenation as group multiplication.

Definition. Let G = (A | R) be a finitely presented group. A automatic structure for the presentation is a
finite state automaton W, called the word acceptor, along with multiplier automata M, for each x € Al{e},
such that the following hold:

14

e The language accepted by L represents every element of the group, that is, {@ |w € L} = G.

e For each © € A, M, is a finite state automaton that accepts the language L, = {(w1,w2) € L X L :
T = B3).

e M, is a finite state automaton that accepts the language L. = {(wy,ws) € L X Lw; = ws}.

It is known that if a group has an automatic structure with respect to one set of generators, then it has
an automatic structure with respect to every set of generators [1]. Thus, if a group has a finite presentation
with an automatic structure, it is said that the group is automatic.

Epstein, et. al [1] gave a similar definition of an asynchronously automatic group.

Definition. Let G = (A | R) be a finitely presented group. An asynchronous automatic structure for the
presentation is a finite state automaton W, called the word acceptor, along with asynchronous multiplier
automata M, for each x € AU {e}, such that the following hold:

e The language accepted by L represents every element of the group, that is, {& |w € L} = G.

e For each x € A, M, is an asynchronous automaton that accepts the language L, = {(w1,ws) € L X L :
1T = Wa}.

e M, is an asynchronous automaton that accepts the language L. = {(wq,ws) € L x Ly = w3 }.

As in the synchronous case, if a group has an asynchronous automatic structure with respect to one set
of generators, then it has an asynchronous automatic structure with respect to every set of generators [1].
Thus, if a group has a finite presentation with an asynchronous automatic structure, we say that the group
is asynchronously automatic.

Remark. While every asynchronously automatic group is automatic, the class of asynchronously automatic
groups is strictly larger. In particular, for p # ¢, the Baumslag-Solitar group G, , = ({z,y} | {yzPy~'z=7})
is asynchronously automatic, but not automatic.

It would seem natural to go on to define a non-deterministic asynchronously automatic group in a similar
fashion. However, in [6], Shapiro proved that any such group also admits a (deterministic) asynchronous
automatic structure. For this reason, we work with determinstic asynchronous automatic structures through-
out.

One particular type of asynchronous automaton, defined in [1], will be useful in our study of asyn-
chronously automatic groups.

Definition. An asynchronous automaton is bounded with boundedness factor k if that the automaton never
reads more than k letters in a row from any of its tapes. We say that an asynchronous automatic structure
is bounded asynchronous if each of its multiplier automata are bounded.

Theorem 5 (Epstein, et. al, [1]). Let G be a group with an asynchronous automatic structure given by an
alphabet A, a word acceptor W, and multiplier automata M, for x € AU {e}. Then G has a boundedly
asynchronous automatic structure over A, with a language that is a subset of L(W). Moreover, there is
an effective procedure for constructing the boundedly asynchronous automatic structure from the original
structure, and this procedure does not depend on G.

15

4.2 Recovering a group from an asynchronous automatic structure

Much work has been done on understanding which groups have an automatic structure. In parallel, the
problem has been investigated in reverse: given a set of automata over an alphabet A, how can one tell if
they are the (asynchronously) automatic structure of some finitely presented group?

In [1], Epstein, et. al answered this question in the case of synchronous automatic structures. In particular,
they gave a set of 13 axioms, each of which are statements about the automata W, M,, such that the
automata are the automatic structure of some group if and only if all 13 axioms are satisfied. Moreover,
these axioms are decidable predicates (that is, there is an algorithm that returns 1 if the predicate is true
and 0 if the predicate is false), and they give an algorithm for finding a finite presentation of the group when
it exists.

We now provide a similar result in the case of asynchronous automata. In light of Theorem 5, we only
consider the case in which the multiplier automata are bounded.

Theorem 6. Let A be a finite alphabet, let W be a finite state automaton accepting the regular language
L =L(W), and let {M,} be a collection of two-tape boundedly asynchronous automata for each x € AU {e}.
Then there is a group G for which W and {M,} form an asynchronous automatic structure for G if and
only if the following axioms hold:

1. (Fw)(w € L).

2. For each x € AU {e}, (Vw,v)((w,v) € L, = we LAveL).
3. (Vw)(we L = (w,w) € L).

4. (Vu,v)((u,v) € Le = (v,u) € L¢).

5. (Yu,v,w)(((u,v) € Le A (v,w) € L) = (u,w) € L).

6. For each x € A, (Vu)(u € L = (Fv)((u,v) € Ly)).

7. For each x € A, w)(((u,v) € Ly A (u,w) € Ly) = (v,w) € Le).
8. For each z € A, (Yu,v,w)(((u,v) € Lc A (u,w) € L) = (v,w) € Ly).
9

10. For each x € A, (Vu,v,w)(((u,v) € Ly A (w,v) € L) = (u,w) € L).

(Vu
(
. For each z € A, (W)(ve L = (3u)((u,v) € L,)).
(
(Vu, v, w)(((w,v) € Le A (w,u) € Ly) = (w,v) € Ly).

11. For each xz € A,
12. For a word w = x1 ...%, with each x; € A, we write [v]p, = [u] to denote the statement
(Fvr, ..o vp—1)((v,v1) € Ly A (v1,02) € Ly A-- - A (Up—1,u) € Ly,).

Then
(Vu, w,w")(uw € LAuw' € L) = (Y)([v]pw = [uw] <= [v]pw = [uw'])).

13. Let ¢ be the mazimum number of states in any of W, M, and M,, and let k be the largest boundedness
factor of any M, or M.. For each word w over A of length at most 2c + 2k,

Cu)([ulpw = [u]) = (Vu)([u)pw = [u)).

16

Remark. If we are given a collection of (possibly) unbounded asynchronous automata, we can first apply the
algorithm given by Theorem 5, check if the resulting automata are bounded (by looking for loops entirely
contained in the left or right state set) and then apply Theorem 6. Thus, if Axioms 1-13 are decidable
for bounded asynchronous automata, then the problem of recovering a group from (possibly unbounded)
asynchronous automata is decidable as well.

It is easily verified that a bounded asynchronous automatic structure of a group must satisfy each of the
axioms of Theorem 6. In order to prove the reverse direction, we first prove several lemmas.

Notation. Throughout the remainder of this section, let A be a finite inverse-closed alphabet, L = L(W)
and L, = L(M,) for each v € AU {e}, where W is a finite state automaton and each M, is a bounded
asynchronous automaton over A such that L and L, satisfy Axioms 1-13.

By Axioms 3-5, we may partition L into a set of equivalence classes X under the equivalence relation
u ~ v if and only if (u,v) € L.. We write [u] to denote the equivalence class of a word u € L.

Lemma 2. For each x € A, there exist unique invertible maps ¢, : X — X (acting on the right) such that
for any u,v € L, [u]p, = [v] if and only if (u,v) € L,.

Proof. Fix x € A. For each u, we can use Axiom 6 to choose a word v € L such that (u,v) € L,, and define
amap S, : L — L by us, = v. Then by Axiom 7, the induced map s’ : L — X defined by us), = [v] is
independent of our original choice of v. By Axiom 8, if u and w are in the same equivalence class then s/,
maps them to the same equivalence class [v], and so s!, restricts to a map ¢, : X — X having the desired
property. Finally, Axiom 7 shows that this map is unique.

Axioms 9-11 similarly define maps p, : X — X for which [v]u, = [u] if and only if (u,v) € L. Then
pz = @, for each z, and so we see that the maps ¢, are invertible, as desired. O

This lemma, combined with Axiom 12, allows us to extend the notion of an equivalence class to the prefix
closure of L, which we denote by L, as follows. For each prefix u of a word uw in L, define [u] = [uw]p, .
Axiom 12 shows that this is a well-defined equivalence class.

Notation. If w =z ---x, is a word over A, we define ¢, = Yo, Yz, =+ Pu, -
Note that ¢, 1 = ;! for any = € A.
Lemma 3. We have [€]p, = [u] for any prefit u € L.

Proof. Notice that if uw € L, then [€]py, = [uw] by the definition of the extension of ~ to prefixes, and so
lelou = [uw]py! = [u]. 0

Finally, define H to be the group generated by the maps ¢, under composition. Then H acts on X on
the right. We wish to show that this action is transitive and free, for we can then identify the elements of
H with the elements of X.

Lemma 4. The action of H on X is transitive.
Proof. Given two equivalence classes [u] and [v] where u,v € L, we note that
[ule 00 = [elpu = [v],

and so each equivalence class is mapped to every other under the group action.]

17

To show that the action is free, we first prove the following lemma.

Lemma 5. Suppose © € A and u,u’ are words in L such that [€lp.p.p,! = [€]. Then puprp,’ is the
identity in H.

Proof. First note that the assumption implies [u]p, = [u]. Therefore, (u,u’) is accepted by the asynchronous
automaton M,. Recall that this assigns a unique shuffle a1as - - - @y 4|12 to (u$,u'$), and the letters a;
can be divided into consecutive blocks of letters, each of which corresponds to exactly one of u or u’. Since
M, has boundedness factor at most k, each of these blocks has length at most k.

For each ¢t > 0, define u(t) to be the word formed by the first ¢ blocks of consecutive letters of « in the
shuffle of w and ’. Let the blocks of u be By, ..., B, and those of v’ be B, ..., B!, (where one of B,, or B/,
may be the empty string, depending on the shuffle, and all other blocks are nonempty and of length at most
k). In this notation, we have u(t) = By --- By for t < n and u(t) = By --- B, for t > n.

Note that for each ¢, at some point in the path accepting (u,u’) in M, we have traversed a shuffle
corresponding to (u(t),u'(t)). By removing all loops from this path, the shortest path from this point to the
accept state is less than the number of states of M, so it is at most ¢ — 1 where ¢ is the maximum number
of states of any of the automata M, or M.. Thus there exist words w; and w; of total length at most ¢ — 1
for which (u(t)ws, v/ (t)w}) € L,.

Consider the word

Ty = wta:w’t_1B£+1w£+1x71w;+11Bt_+11.
This has length at most ((c—1)+1)+k+ ((c—1)+ 1)+ k = 2c+ 2k. We wish to show it fixes some element
of X, in order to apply Axiom 13. Indeed, we have
[u(t)er, =

’ ’ —1,,—1 —1
fr1 Wy @, By

t wt](pa:(pw£7132+1w2+193_1w;+11 B;+11

]sawt zw;_ 'B

/
w —1 —1,,—1 p—1
> t]@wt Biwi o we By

é+1“’;+19571w;+113t7+11
19371“’1::13;:1
L+ 1>w;+1]90a:—190wa_113
ult + Dwip]p,, 1

ult + D]ep-1

-1
t4+1

—1
lBt+1

and so, by Axiom 13, ¢, is the identity in H. It follows that for each t =1,2,...,n — 1, we have

., '—=1 ’ -1,,—1 =
<pwta:'wt Bt+1wt+137 W,y $Biy1

and similarly
SDB{w/fla;_lwfl = ¥Bi-

Multiplying these n equations together, we find
¥B; BBzt = Y$B1By--Bn)>

SO QYurpyt = @y, and thus gou%ﬁgo;,l is the identity, as desired. O

18

Lemma 6. The action of H on X is free.

Proof. Note that it suffices to show that, for all words v,

[epo =[] = (Vu)([ulpy = [u]).

For, if this holds, then if u € L is such that [u]p,, = [u], we have [€]pupuwpyt = [€], 50 pupwe, ' = id,
and hence o, = ¢, 1, = id as well.

Let w be an arbitrary word that fixes the basepoint [e], that is, [€]¢,, = [¢]. (Note that such a word w
must exist by Lemma 4.) Write w in a reduced form x5 - - - x,, where each 7; € AU A~1, and there are no
pairs of consecutive letters of the form zz~! or z7tx.

By our definition of the equivalence relation on L, each equivalence class can be represented by an element

of L, so for each t = 1,...,n — 1, there is some word u; € L such that

[we] = [elpay -z, = [elPwe) = [w(E)]-
Also set ug = u,, = €.
Then

-1
ut]wwt«kl @ut+1

W) Py 1 Py
w(t+1le,!

ut+1]¢;1+1
€].

[6](,0ut @$t+1 4101:3‘#1 =

By Lemma 5, we have that ¢, ¢, +1g0;t1+1 is the identity in H. Multiplying these together over t =
0,...,n—1 yields
PuoPas Py Pur Py * P P = 1d,
which simplifies to
Py vy, = id.
Thus ¢,, = id, as desired. O

We now prove Theorem 6.

Proof. Let G = H be the group having the transitive and free action on X described in Lemma 6. Since the
action is transitive and free, we may identify the elements of G bijectively with the elements of X, as follows.
Identify the identity element of G with [e], and for each g € G, identify g with [e]g. Then transitivity gives
that this identification is surjective, and freedom gives that this identification is injective, and thus it is a
well defined bijection.

It follows that the action of G on X is isomorphic to the action of G on itself by right multiplication.
Therefore, M, accepts precisely the pairs of words representing elements of GG that differ by the generator x
in the Cayley graph for each x, and M, accepts the pairs of words in L representing the same element of G.
It follows that L, M, form an asynchronous automatic structure for G, as desired.]

19

4.3 Decidability

In this section, we assume basic familiarity with decidable predicates. For a thorough introduction to this
topic, see [2].

In [1], Epstein, et. al gave a set of axioms, each of which are first-order sentences involving regular
predicates, that allow one to recover a group from a set of synchronous automata if all the axioms are
decidably true, or determine that there is no such group if one of the axioms is decidably false. In Theorem
6, we have given a similar set of axioms for recovering a group from a set of asynchronous automata, each of
which are first-order sentences involving quasi-regular predicates. Since regular predicates are closed under
first order operations, the axioms for synchronous automata are regular and therefore decidable, but it is
less clear whether the axioms of Theorem 6 are quasi-regular, or even decidable. We now investigate the
decidability of Axioms 1-13.

Adopting the terminology in [2], we say that a statement is partially decidable if there is an algorithm
that halts and outputs true if the statement is true, and does not halt if the statement is false.

Theorem 7. Let P(W,{M,}) denote the statement: “The finite state automaton W over the alphabet A
and asynchronous automata M, over A, one for each x € AU{e}, do not form the asynchronous automatic
structure of any finitely presented group.” Then P is partially decidable.

We first show that Axioms 1, 2, 6, and 9 are decidable.

Lemma 7. Let W be a finite state automaton over A, and let M, for each x € AU {e} be asynchronous
automata over A. Then Azioms 1, 2, 6, and 9 are decidable predicates.

Proof. Note that Axiom 1 is a regular predicate and is therefore decidable.
For Axiom 2, we can simplify the statement as follows:

(le,wz)(()) (’LU1 e LANwsy € L))

_‘(Elw17w2)[((wlaw2)) (w1 ¢ LVwy ¢ L)

(3w, wa)[(((w1,we) € Ly) A (w1 & L)) V (w1, w2) € Ly) A(wa & L))]

=[(Fwr, w2) (w1, w2) €) (w1 & L))V (Fwr, w2) (w1, w2) € Ly A (wa € L))]

= {[Bw1)((Fw2) (w1, w2) € Ly) A (wr & L))V [(Fw2)((Fw1) (w1, w2) € Ly) A (w2 & L))}

In the last formulation of the statement above, the smaller statements (Jws)((wi,ws) € L) and
(Fw1)((wy,we) € L;) define regular languages in the variables w; and wsy respectively, by part (f) of Propo-
sition 1. The statements wy ¢ L and wy ¢ L are regular as well, since regular predicates are closed under
negation. Thus we have rewritten the original statement as a first-order statement involving regular predi-
cates, which is regular and hence decidable.

Axioms 6 and 9 can similarly be stated in terms of regular predicates. This completes the proof.]

We now prove Theorem 7.

Proof. By Lemma 7, the negations of Axioms 1, 2, 6, and 9 are decidable, and hence partially decidable.
We now show that the negation of Axiom 3, that is,

(Bw)(w € L A (w,w) & L),

is partially decidable. Indeed, we can order the words in A* in length-lexicographic order (with respect
to some ordering of A), and check in order if each satisfies w € L A (w,w) ¢ L¢ by passing w and (w,w)

20

through the automata W and M., respectively. When we reach a word w that satisfies the two conditions,
we stop, and otherwise we check the next word in the length-lexicographic ordering. This procedure halts if
the statement is true, and runs indefinitely if it is false, as desired.

This argument can be easily modified to show that Axioms 4, 5, 7, 8, 10, and 11 are partially decidable.

We next show that the statement “Either Axiom 9 is false or Axiom 12 is false” is partially decidable.
Consider the natural product ordering of (A*)* that arises from the length-lexicographic ordering of A*. We
apply the following procedure to the 4-tuples (u,w,w’,v) in (A*)* in order. We use W to check if uw and
uw’ are in L. If not, we go on to the next 4-tuple.

If ww and uw’ are both in L, then we check the validity of each of the statements [v]p,, = [uw] and
[V]pw = [uw']. Let x124 ... 2, be the letters of w. We first check if there is some v; for which (v,v1) € Lg,.
(We can check this since the projection of a two-variable quasi-regular language is regular.) If there is no
such vy, we stop; this proves the negation of Axiom 9. If there is such a v1, we can choose one by searching
through all finite paths starting at the start state in order of length until we come across the first shuffle
that spells v in the left state set. We now apply the same procedure to either choose some vy such that
(v1,v2) € Ly,, or halt if no such vy exists.

Continuing in this fashion, if we have chosen a word v;, we determine whether there is some v;41 with
(vi, Vig1) € La,,, for i <mn —1. If at the nth step we obtain a word v,, we check if (v,,,uw) € L. If so, the
statement [v]p,, = [uw] is true, and if not, it is false. We similarly check the validity of [v], = [uw']. If
both are true or both are false, we go on to the next 4-tuple. Otherwise, we halt, as this proves the negation
of Axiom 12. Thus, the statement “Either Axiom 9 is false or Axiom 12 is false” is partially decidable.

We next show that “Either Axiom 9 is false or Axiom 13 is false” is partially decidable. For each fixed
w with length at most 2¢ 4+ 2k, we check all u in the prefix closure of L to determine if [u]p,, = [u], with a
procedure that halts if Axiom 9 is false, as before. If we find two strings u,v such that the [u]p,, = [u] but
[v]w # [v], we halt; Axiom 13 is false. Otherwise, our procedure runs indefinitely.

Finally, by Theorem 6, the statement P(W,{M,}) is equivalent to the statement:

“Axiom 1 is false or Axiom 2 is false or ... or Axiom 13 is false,”
which can be rewritten as

“Axiom 1 is false or Axiom 2 is false or ... or (Axiom 9 is false or Axiom 12 is false) or (Axiom
9 is false or Axiom 13 is false).”

The latter is partially decidable, as we can run each of our above procedures in parallel.]

5 Future Work

It remains to be shown whether all of the Axioms of Theorem 6 are decidable. To do so, it would be useful
to further understand the closure properties of quasi-regular and weakly regular predicates, as either can be
used to define asynchronously automatic groups. (See [6])

We have shown that quasi-regular languages are closed under complementation but not under union,
and weakly regular languages are closed under union but not under complementation. Thus, it may also
be of interest to investigate intermediate classes of languages in order to find one that is closed under both
complementation and union. For instance, the class of all finite unions of quasi-regular languages is larger
than the class of quasi-regular languages and smaller than that of weakly regular languages, and it is closed
under union (though not under complementation).

21

Another possible method for proving deciability is to modify the Axioms. For instance, in Axiom 13
we have used the property that the multiplier automata are bounded to obtain an upper bound on the
length of the words w that we need to check. It is plausible that similar methods may be used to modify,
say, Axiom 3, which is equivalent to the statement —(Jw € L)((w,w) € L), so that it instead states
—(Fw € L,|w| < f(k,e))((w,w) ¢ L¢) for some computable function f(k,c), where k is the boundedness
factor of M, and c is the number of states of M,. This modified axiom would then be decidable.

Finally, we note that Rubin [5] defined a generalized notion of quantifiers, and classified the unary
quantifiers that preserve regularity. It would be of interest to study which generalized quantifiers preserve
quasi-regular and weakly regular predicates.

6 Acknowledgments

I thank my supervisor, Mia Minnes, for her teaching and guidance throughout the course of this research.
I also thank the Colorado State University mathematics colloquium for the opportunity to give a talk on
this research. Finally, I thank Paul Christiano and Derek Holt for numerous helpful conversations and for
catching minor errors.

References

[1] D.B.A. Epstein, J.W. Cannon, D.F. Holt, F.V.F. Levi, M.S. Paterson, W.P. Thurston, Word processing
in Groups, Jones and Bartlett Publishers, Boston, 1992.

[2] N. Cutland, Computability, An introduction to recursive function theory, Cambridge University Press,
1980.

[3] B. Khoussainov and A. Nerode, Automatic presentations of structures, Lecture Notes in Computer
Science 960 (1995), 367 - 392.

[4] M. Rabin and D. Scott, Finite Automata and their Decision Problems, IBM Journal of Research and
Development 3 (1959), 114-125.

[5] S. Rubin, Automata presenting structures: a survey of the finite string case, Bulletin of Symbolic Logic,
Vol. 14, Tssue 2 (2008), 169-209.

[6] M. Shapiro, Deterministic and non-deterministic asynchronous automatic structures, International
Journal of Algebra and Computation Vol. 2, No. 3 (1992), 297-305.

22

