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Abstract

Given a partition λ of n, a k-minor of λ is a partition of n − k whose Young
diagram fits inside that of λ. We find an explicit function g(n) such that any
partition of n can be reconstructed from its set of k-minors if and only if k ≤ g(n).
In particular, partitions of n ≥ k2 + 2k are uniquely determined by their sets of
k-minors. This result completely solves the partition reconstruction problem and
also a special case of the character reconstruction problem for finite groups.

1 Introduction

The problem of partition reconstruction can be stated as follows. For any positive integer
k, define a k-minor of a partition λ of a positive integer n > k to be a partition of n− k
whose Young diagram fits inside that of λ. It is natural to ask for which n and k we can
uniquely determine any partition of n from its set of k-minors.

In this paper, we demonstrate that partitions of any positive integer n ≥ 2 other
than 5, 12, 21, and 32 can be reconstructed from their k-minors if and only if k ≤
min0≤t≤n ρ(n− t+ 2) + t− 2, where ρ(m) is the smallest positive divisor d of m for which
d ≥
√
m. This result is verified by computer for all n < 1765 and proven for all n ≥ 1765.

For n = 5, 12, 21, or 32, the partitions of n can be reconstructed from their k-minors
if and only if k is at most 1, 3, 5, or 7 respectively. Together, these results solve this
reconstruction problem completely.

Pretzel and Siemons [8] demonstrated that partitions of n can be reconstructed from
their sets of k-minors if n ≥ 2k2 + 8k + 6, and asked whether this bound is the best
possible. In fact, it is not: we can improve this result to n ≥ k2 + 2k. This bound is the
best possible, in the sense that for every k there exist two distinct partitions of k2 +2k−1
which have the same set of k-minors.

The problem of partition reconstruction arises naturally in representation theory. The
character reconstruction problem for finite groups [8] asks when we can uniquely recover
the character of a representation of a finite group G over a field of characteristic zero
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from its restriction to various subgroups. In Section 4.1, we show that our results on
partition reconstruction solve this problem when G is the symmetric group Sn acting on
{1, 2, . . . , n}, and the subgroup is the stabilizer of any subset of {1, 2, . . . , n}.

Reconstruction of partitions also has applications to related reconstruction problems.
Define a cycle k-minor of a permutation p ∈ Sn to be a permutation in Sn−k formed by
deleting k elements of the decomposition of p into disjoint cycles and re-numbering the
remaining entries from 1 to n−k, preserving the relative order of the entries. The problem
of reconstructing a permutation from its set of cycle k-minors is currently open [7]. In
Section 4.2, we demonstrate that for any k, we can reconstruct the conjugacy class of a
permutation in Sn from its cycle k-minors for sufficiently large n.

1.1 Notation

We now introduce the definitions needed to state the main results. Further notation will
be provided as needed in Section 3.

Let n be a positive integer. A partition λ of n is an array [λ1, λ2, . . . , λm] of positive
integers which satisfy λ1 ≥ λ2 ≥ · · · ≥ λm and

∑m
i=1 λi = n. If λ = [λ1, λ2, . . . , λm] is a

partition of n, we say that n is the size of λ, and we call λ1, λ2, . . . , λm the parts of λ. For
any partition λ, we will always use λ1 to denote the largest part, λ2 the second largest,
and so on, and we define λj = 0 for any j larger than the number of parts of λ. We now
introduce the notion of a minor of a partition.

Definition. Let λ be a partition of n, and let µ be a partition of n − k. Then µ is a
k-minor of λ if µi ≤ λi for all i. We write Mk(λ) to denote the set of all k-minors of λ.

The Young diagram of a partition λ = [λ1, . . . , λm] is a partial grid of squares consisting
of m rows, aligned at the left, with the ith row containing λi squares for each i ≤ m.
Henceforth, we will refer to a partition and its Young diagram interchangeably.

A corner square of the Young diagram of a partition λ is a square X for which there
are no squares directly below or directly to the right of X. We write λ/X to denote the
partition whose Young diagram is formed by removing X from λ. In general, a k-minor
of λ can be formed by iterating k times the process of removing a single corner square,
beginning with the Young diagram of λ. We also write λ/µ to denote the set of squares
in a partition λ that are not in its minor µ.

For example, consider the partition λ = [5, 2, 2, 1]. The Young diagram of λ is shown
below. The Young diagram of its 2-minor µ = [3, 2, 1, 1] is shaded, and we see that the
Young diagram of µ fits inside that of λ.
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Continuing with this example, we find that

M3([5, 2, 2, 1]) = {[5, 2], [5, 1, 1], [4, 2, 1], [4, 1, 1, 1], [3, 2, 2], [3, 2, 1, 1], [2, 2, 2, 1]}.

We wish to find the pairs of integers n and k for which Mk(λ) = Mk(ν) implies that λ = ν
for all partitions λ and ν of n. If this property is satisfied for a given n and k, we say
reconstructibility holds, and otherwise it fails. The partition reconstruction problem asks
when reconstructibility holds. To answer this, we require the following number theoretic
function.

Definition. For any positive integer m, let ρ(m) be the smallest divisor d of m for which
d ≥
√
m.

2 Main Results

In this section we state the main results and defer the proofs until section 3.

Theorem 2.1. Let n and k be positive integers with k < n. For n 6∈ {5, 12, 21, 32}, define

g(n) = min
0≤t≤n

ρ(n+ 2− t)− 2 + t

and also define g(5) = 1, g(12) = 3, g(21) = 5, g(32) = 7. Then partitions of n can be
reconstructed from their sets of k-minors if and only if k ≤ g(n).

Theorem 2.1 provides us with an efficient means of determining whether reconstructibil-
ity holds for a given n and k by finding the minimum of a set of only n values. In fact,
there are even more efficient ways of computing g(n), as the following two theorems show.

Theorem 2.2. Let n > 2 be a positive integer other than 5, 12, 21, and 32. Then

g(n) = min{ρ(n+ 2)− 2, g(n− 1) + 1}. (2.1)

Furthermore, we have the following explicit formula when n is two less than a square.

Theorem 2.3. Suppose n+ 2 is a perfect square. Then g(n) =
√
n+ 2− 2.

Theorems 2.2 and 2.3 enable us to compute g(n) without computing all values of
ρ(n + 2 − t) − 2 + t for 0 ≤ t ≤ n. Given n, we can first find the largest m ≤ n for
which m+ 2 is a perfect square, compute g(m) using Theorem 2.3, and then use (2.1) to
compute g(m+ 1), g(m+ 2), . . . , g(n). For example, g(63) = min{ρ(65)− 2, g(62) + 1} =
min{13− 2,

√
64− 2 + 1} = 7.

Theorem 2.3 can be extended to several other infinite families of positive integers n.
For instance, if d is a fixed positive integer and n = r(r+ d)− 2 for some positive integer
r, then as long as r is sufficiently large compared to d we have g(n) = ρ(n+ 2)− 2. The
proof of this fact is similar to that of Theorem 2.3, and we omit it.

The order of growth of g is approximately
√
n, as the following theorem illustrates.
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Figure 1: The plot of g(n) for 2 ≤ n ≤ 150, along with the lower bound of
√
n+ 2 − 2. The

lower bound is achieved when n+ 2 is a perfect square, as indicated.

Theorem 2.4. For all positive integers n ≥ 2,
√
n+ 2− 2 ≤ g(n) ≤

√
n+ 2 + 3 4

√
n+ 2.

Hence, for large n we can approximate g(n) as
√
n+ 2. This is usually unnecessary

due to the formulas above, but it provides useful intuition about the values of g.
While g is clearly not an invertible function (see Figure 1), we can provide a tight

bound on reconstructibility for a fixed positive integer k.

Theorem 2.5. Let k be a positive integer. Then reconstructibility holds for n ≥ k2 + 2k,
and fails for n = k2 + 2k − 1.

Notice that there are some values of n that are less than k2 + 2k − 1 for which any
partition of size n can be reconstructed from its set of k-minors. For example, for k = 6,
reconstructibility holds for n = 27, 30, 31, 32, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46. It fails for
n = 47, but for n ≥ 62 + 2 · 6 = 48, partitions of n can always be reconstructed from their
6-minors.

3 Proofs

We first prove Theorem 2.2, which we restate below.

Theorem 2.2. Let n > 2 be a positive integer other than 5, 12, 21, and 32. Then

g(n) = min{ρ(n+ 2)− 2, g(n− 1) + 1}.

Proof. It can be verified by a direct calculation that this recursion holds for n = 6, 13,
22, and 33. Suppose n 6∈ {5, 6, 12, 13, 21, 22, 32, 33}. Then by the definition of g,

g(n) = min
0≤t≤n

ρ(n+ 2− t)− 2 + t

= min
−1≤t≤n−1

ρ(n+ 2− (t+ 1))− 2 + (t+ 1)

= min

{
ρ(n+ 2)− 2,

(
min

0≤t≤n−1
ρ((n− 1) + 2− t)− 2 + t

)
+ 1

}
= min{ρ(n+ 2)− 2, g(n− 1) + 1}

as desired.
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We proceed to prove the lower bound of Theorem 2.4.

Lemma 3.1. For all positive integers n ≥ 2,

√
n+ 2− 2 ≤ g(n).

Proof. A straightforward calculation shows that the inequality holds for n ≤ 32 (see Figure
1). Suppose n ≥ 33. Then by the definition of g, we have g(n) = ρ(n+ 2− t)− 2 + t for
some t such that 0 ≤ t ≤ n. Thus

g(n) = ρ(n+ 2− t)− 2 + t

≥
√
n+ 2− t− 2 + t

≥
√
n+ 2− 2

where the final inequality follows from the fact that
√
n+ 2− t − 2 + t is an increasing

function of t when 0 ≤ t ≤ n.

Theorem 2.3 now follows.

Theorem 2.3. Suppose n+ 2 is a perfect square. Then g(n) =
√
n+ 2− 2.

Proof. Suppose n + 2 is a perfect square. Then ρ(n + 2) − 2 =
√
n+ 2 − 2, so g(n) ≤√

n+ 2−2 by the definition of g. Furthermore, from Lemma 3.1 we have g(n) ≥
√
n+ 2−

2, and hence g(n) =
√
n+ 2− 2.

We now prove the upper bound of Theorem 2.4.

Lemma 3.2. For all positive integers n ≥ 2,

g(n) ≤
√
n+ 2 + 3 4

√
n+ 2.

Proof. Straightforward computation shows that the bound holds for n ≤ 32. Suppose
n ≥ 33, so that the recursion (2.1) holds. Note that for any positive integers a and r for
which r2 − a2 − 2 ≥ 2, we have

g(r2 − a2 − 2) ≤ ρ(r2 − a2)− 2

= ρ((r − a)(r + a))− 2

≤ r + a− 2

by the definitions of g and ρ, and similarly

g(r2 − r − a(a+ 1)− 2) ≤ r + a− 2

whenever r2−r−a(a+1)−2 ≥ 2. Furthermore, iterating the inequality g(m+1) ≤ g(m)+1
(a consequence of Theorem 2.2), we have

g(m+ t) ≤ g(m) + t
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for all t ≥ 0 and m ≥ 2. Combining these, we obtain the following two inequalities.

g(r2 − a2 − 2 + t) ≤ r + a− 2 + t (3.1)

g(r2 − r − a(a+ 1)− 2 + t) ≤ r + a− 2 + t (3.2)

Now, let r =
⌈√

n+ 2
⌉
, so that (r − 1)2 + 1 ≤ n+ 2 ≤ r2.

Case 1. Suppose (r− 1)2 + 1 ≤ n+ 2 ≤ r2− r− 1. Let a be the smallest positive integer
such that r2 − r − a(a+ 1)− 2 ≤ n. Then

n = r2 − r − a(a+ 1)− 2 + t

for some t ≤ a(a+ 1)− (a− 1)a− 1 = 2a− 1. In addition, by the definition of a we have
n ≤ r2−r−(a−1)a−2−1. Since (r−1)2−1 ≤ n, we have (r−1)2−1 ≤ r2−r−(a−1)a−2−1,
which we can solve for a to obtain

a ≤ 1

2
+

√
r − 11

4
.

Therefore, t ≤ 2a− 1 ≤ 2
√
r − 11

4
. By (3.2), we have

g(n) = g(r2 − r − a(a+ 1)− 2 + t)

≤ r + a− 2 + t

≤ r + 3

√
r − 11

4
− 3

2

=
⌈√

n+ 2
⌉

+ 3

√⌈√
n+ 2

⌉
− 11

4
− 3

2

≤
√
n+ 2 + 3 4

√
n+ 2

as desired.

Case 2. Suppose r2 − r ≤ n + 2 ≤ r2 − 1. Let a be the smallest positive integer such
that r2 − a2 − 2 ≤ n. Then n = r2 − a2 − 2 + t for some t ≤ a2 − (a− 1)2 − 1 = 2a− 2.
In addition, by the definition of a we have n ≤ r2 − (a− 1)2 − 3. Since r2 − r − 2 ≤ n as
well, it follows that r2 − r − 2 ≤ r2 − (a− 1)2 − 3, and so

a ≤
√
r − 1 + 1.

Therefore t ≤ 2a− 2 ≤ 2
√
r − 1. By (3.1), we have

g(n) = g(r2 − a2 − 2 + t)

≤ r + a− 2 + t

≤ r + 3
√
r − 1− 1

=
⌈√

n+ 2
⌉

+ 3

√⌈√
n+ 2

⌉
− 1− 1

≤
√
n+ 2 + 3 4

√
n+ 2

as desired.
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Case 3. Suppose n + 2 = r2. By Theorem 2.3 we have g(n) =
√
n+ 2 − 2 ≤

√
n+ 2 +

3 4
√
n+ 2.

Hence, g(n) ≤
√
n+ 2 + 3 4

√
n+ 2 for all n.

Theorem 2.4, which we restate below, follows directly from Lemmas 3.1 and 3.2.

Theorem 2.4. For all positive integers n ≥ 2,

√
n+ 2− 2 ≤ g(n) ≤

√
n+ 2 + 3 4

√
n+ 2.

To prove the remaining theorems, we first introduce some new terminology.

Definition. Let λ and µ be any two partitions. The union of λ and µ is the partition
λ ∪ µ whose ith part is max{λi, µi} for all i. Similarly, the intersection of λ and µ is the
partition λ ∩ µ whose ith part is min{λi, µi} for all i.

In other words, the union or intersection of two partitions is formed by taking the
union or intersection, respectively, of the sets of squares in their Young diagrams.

Definition. Let X be a square of the Young diagram of a partition λ. Then the outer
region of X, denoted Outλ (X), is the set of all squares that lie strictly below or strictly
to the right of X, and the inner region of X, denoted Inλ (X), is the rectangle of squares
with corners at X and the upper left hand corner of the diagram.

X

In(X)

Out(X)

Figure 2: A square X, with its outer region shaded.

We often refer to the outer region or inner region of X simply as Out(X) or In(X)
when the partition in question is clear. Notice that Inλ(X) is always a minor of λ, and
λ/ Inλ(X) = Outλ(X).

Lemma 3.3. Let λ and ν be partitions of n and let κ = λ ∪ ν. Then Mk(λ) = Mk(ν) if
and only if |Outν (X)| ≤ k − 1 for all squares X ∈ κ/λ and |Outλ (Y )| ≤ k − 1 for all
Y ∈ κ/ν.

Proof. Suppose Mk(λ) = Mk(ν), and assume there exists a square X ∈ κ/λ having
|Outν(X)| ≥ k. Then there exists a k-minor µ of ν that contains X, formed by removing
k corner squares in succession from Outλ(X). Since X is not in λ, the minor µ ∈ Mk(ν)
cannot be in Mk(λ), which is a contradiction since Mk(λ) = Mk(µ). Similarly, if there
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exists a square Y ∈ κ/ν with |Outλ (Y )| ≥ k, then there is a minor of λ that is not a
minor of ν. Hence, |Outν (X)| ≤ k − 1 for all squares X ∈ κ/λ and |Outλ (Y )| ≤ k − 1
for all Y ∈ κ/ν.

Conversely, suppose |Outν (X)| ≤ k − 1 for all X ∈ κ/λ and |Outλ (Y )| ≤ k − 1 for
all Y ∈ κ/ν. Let µ be a k-minor of λ, and let X ∈ κ/ν be arbitrary. Assume that µ
contains the square X. Then µ contains In (X), and since | In (X)| + |Outλ (X)| = n
we have | In(X)| > n − k. Hence, µ contains more than n − k squares, a contradiction.
Since X was arbitrary, it follows that µ cannot contain any square in κ/ν, and so µ is a
k-minor of ν as well. By a similar argument, any k-minor µ of ν is a minor of λ, and so
Mk(λ) = Mk(ν).

We now introduce a metric on partitions.

Definition. Let λ and ν be any two partitions. Then the distance between λ and ν,
denoted d(λ, ν), is given by

∞∑
i=1

|λi − νi|.

Alternatively, the distance between λ and ν is the number of squares that appear in
the Young diagram of either λ or ν but not in both. This yields the identity

d(λ, ν) = |λ ∪ ν| − |λ ∩ ν|. (3.3)

Notice that if λ and ν are partitions of the same size and d(λ, ν) = 2, then λ ∪ ν has
exactly one corner square that is in ν but not in λ and exactly one corner square that is
in λ but not in ν. Thus we obtain the following corollary to Lemma 3.3.

Corollary 3.4. Let λ and ν be any two partitions of n having d(λ, ν) = 2. Let X and
Y be the unique corner squares of λ ∪ ν that are not in λ and ν, respectively. Then
Mk(λ) = Mk(ν) if and only if each of |Outν (X)| and |Outλ (Y )| is at most k − 1.

We now show that if reconstructibility fails for n and k, there are two partitions λ and
ν of n with d(λ, ν) = 2 that have the same set of k-minors.

Lemma 3.5. Let k be a positive integer, and suppose n is a positive integer for which
there are partitions λ 6= µ of n for which Mk(λ) = Mk(µ). Then there exists a partition
ν of n such that d(λ, ν) = 2 and Mk(λ) = Mk(ν).

Proof. First note that since λ 6= µ we have d(λ, µ) > 0. Also, by (3.3) and the inclusion-
exclusion principle, we see that d(λ, µ) = |λ∪ν|−|λ∩ν| = |λ|+|ν|−2|λ∩ν| = 2n−2|λ∩ν|
is even, so d(λ, µ) 6= 1. Hence d(λ, µ) ≥ 2.

We now construct ν as follows. The sizes of λ and µ are equal and d(λ, µ) ≥ 2, so
there must exist indices s and t such that µs < λs and λt < µt. We can assume without
loss of generality that s < t. Hence, µt ≤ µs and so λt+2 ≤ λs. Let σ be the largest index
such that λσ = λs, and let τ be the smallest index such that λτ = λt. Notice that we have
defined σ and τ so that row λσ contains a corner square, and adding a square to row λτ
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will result in a new partition. We also have µσ < λσ and λτ < µτ . Since λτ + 2 ≤ λσ, it
follows that we can move a square in the Young diagram from the part λσ to λτ to form
a new partition.

Let m be the number of parts of λ, and let ν be the partition

[λ1, λ2, . . . , λσ − 1, . . . , λτ + 1, . . . , λm]

formed by moving a square of the Young diagram from the part λσ to λτ . Notice that
d(λ, ν) = 2. We proceed to show that Mk(λ) = Mk(ν).

Let X be the square in row τ that is in ν but not in λ, and let Y be the square in row
σ that is in λ but not in ν as shown below. By Corollary 3.4, it suffices to show that each
of |Outν (X)| and |Outλ (Y )| is at most k − 1. Notice that Y is not in µ since µσ < λσ.
Since Mk(λ) = Mk(µ), it follows from Lemma 3.3 that |Outλ(Y )| ≤ k − 1. Also, since
λτ < µτ , the square X is in µ but not in λ, so |Outµ(X)| ≤ k − 1. Furthermore, X is in
the same row and column in µ as it is in ν, so | Inµ(X)| = | Inν(X)|. Since µ and ν have
the same size n, it follows that |Outν(X)| = |Outµ(X)| ≤ k − 1 as desired.

X

Y

λ ν

σ

τ

We now provide a necessary and sufficient condition for reconstructibility to hold for
a given n and k. We write c mod a to denote the remainder when c is divided by a.

Lemma 3.6. Let n and k be positive integers. Then there exist partitions λ 6= µ of n
with Mk(λ) = Mk(µ) if and only if n can be expressed in the form

n = (a+ 1)b+ c− 1

for some positive integers a, b, and c satisfying a ≤ c ≤ k and b+ (c mod a) ≤ k.

Proof. First, suppose n = (a+ 1)b+ c− 1 for some positive integers a, b, and c satisfying
a ≤ c ≤ k and b+ (c mod a) ≤ k. Let r = c mod a and q = (c− r)/a so that c = aq + r.
Consider the partition κ = [a + 1, a + 1, . . . , a + 1, a, a, a, . . . , a, r] that contains b parts
equal to a + 1, q parts equal to a, and one part equal to r. Then κ is a partition of
n + 1. Let λ be the 1-minor of κ formed by removing the corner square X that appears
in the last part in κ equal to a + 1, namely, κb, and let µ be the partition formed by
removing the corner square Y appearing in the last part equal to a, namely, κb+q. Then
|Outκ(X)| = aq + r = c ≤ k and |Outκ(Y )| = b+ r = b+ (c mod a) ≤ k. Hence, each of
|Outµ(X)| and |Outλ(Y )| is at most k − 1, so by Corollary 3.4 we have Mk(λ) = Mk(µ).
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Conversely, suppose n and k are such that there exist partitions λ 6= µ of n with
Mk(λ) = Mk(µ). We will show that we can find a partition κ′ of n+ 1 having two squares
X ′ and Y ′ that are either in adjacent rows or adjacent columns in the Young diagram of
κ′, and such that | In(X ′)| ≥ n− k and | In(Y ′)| ≥ n− k.

By Lemma 3.5, there exists a partition ν of n such that d(λ, ν) = 2 and Mk(λ) =
Mk(ν). Let κ = λ ∪ ν. Let X be the square in κ that lies outside of λ and let Y be the
square in κ that lies outside of ν. Assume without loss of generality that X lies above
and to the right of Y . Suppose X is in row b and Y is in column a, so that In (X)∩ In (Y )
is an a × b rectangle of squares. Let c and d be such that Y is in row b + c and X is in
column a+d. We may also assume without loss of generality that a ≤ b, by interchanging
the rows and columns if necessary.

X

Y

{ a
{b

{ d

{c
X

Y0

{ a+ 1

{b
{c′

Figure 3: Moving Y closer to X as in the proof of Lemma 3.6.

If c = 1 or d = 1, then we can set κ′ = κ. Otherwise, let c′ be the largest positive
integer such that (a+ 1)c′ ≤ ac. By this definition, we have (a+ 1)(c′ + 1) > ac, so

(a+ 1)c′ ≥ ac− a. (3.4)

Let m = |Outκ(X)|, and write m = (a+1)q+r where q and r are nonnegative integers
with 0 ≤ r ≤ a. Define η to be the partition having b parts equal to a+ d, followed by q
parts equal to a+ 1, and one part equal to r. In other words, we stack all of the squares
in the outer region of X in rows of a + 1 (with r left over) below row b, as in Figure 3.
Let Y0 be the last square in row b+ c′ in η. Notice that Y0 is closer to X than Y is, both
vertically and horizontally.

We clearly have | Inη(X)| = | Inκ(X)|, which is at least n − k by Lemma 3.3. Using
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(3.4) and our assumption that b ≥ a, we have

| Inη(Y0)| = (a+ 1)(b+ c′)

= (a+ 1)b+ (a+ 1)c′

≥ (a+ 1)b+ ac− a
= a(b+ c) + b− a
= | Inκ(Y )|+ b− a
≥ | Inκ(Y )|.

Since | Inκ(Y )| ≥ n− k by Lemma 3.3, we have | Inη(Y0)| ≥ n− k.
We can now continue this process starting with η and new values a and b formed by

the intersection of the inner regions of Y0 and X. Hence, we can form a partition κ′

having X ′ and Y ′ either in adjacent rows or adjacent columns and each of | Inκ′(X ′)| and
| Inκ′(Y ′)| is at least n − k. This implies that each of |Outκ′(X ′)| and |Outκ′(Y ′)| is at
most k.

X′ X′

Y ′

Y ′′

Figure 4: Creating κ′′.

Finally, consider such a partition κ′. Suppose, without loss of generality (by inter-
changing rows and columns if necessary), that X ′ and Y ′ are in adjacent columns with
Y ′ below and to the left of X ′, as in Figure 4. Let p be the number of squares of the
Young diagram that are in both of Out (X ′) and Out (Y ′). Suppose Y ′ is in column
a of the Young diagram. Write p = aq + r where q and r are nonnegative integers
with 0 ≤ r < a. Consider the partition κ′′ formed by removing all p aforementioned
squares from κ′, and then adding q rows of a and one row of r squares below the row
containing Y ′. Let Y ′′ be the new corner square in column a. Then κ′′ has the form
[a+ 1, a+ 1, . . . , a+ 1, a, a, a, . . . , a, r]. Let b be the number of parts of κ′′ equal to a+ 1,
and let s be the number of parts equal to a. Define c = as + r. Then we see that
n + 1 = (a + 1)b + c. Also, a ≤ c = as + r = p + a(s − q) = |Outκ′ (X ′)| ≤ k, and
b+ (c mod a) = b+ r ≤ b+ p = |Outκ′ (Y ′)| ≤ k.

Therefore, there exist partitions λ 6= µ of n with Mk(λ) = Mk(µ) if and only if n can
be expressed in the form

n = (a+ 1)b+ c− 1

for some positive integers a, b, and c satisfying a ≤ c ≤ k and b+ (c mod a) ≤ k.

Theorem 2.5 follows immediately, and we provide the proof below.

11



Theorem 2.5. Let k be a positive integer. Then reconstructibility of partitions of n from
their k-minors holds for n ≥ k2 + 2k, and fails for n = k2 + 2k − 1.

Proof. Let n and k be positive integers that satisfy the conditions in Lemma 3.6 for some
a, b, and c. Then the inequality b + (c mod a) ≤ k implies b ≤ k, so each of a, b, and
c are at most k. Hence, for a given k, the largest value of n for which reconstructibility
fails occurs when a = b = c = k and n = k2 + 2k − 1.

We now introduce an auxiliary function, h, which we will later show is identical to g.

Definition. Let n be a positive integer. Then h(n) is the largest value k for which
partitions of n can be reconstructed from their k-minors for all k ≤ h(n).

By this definition, partitions of n cannot be reconstructed from their (h(n) + 1)-
minors. We proceed to show that in fact there are no values k larger than h(n) + 1 for
which partitions of n can be reconstructed from their k-minors.

Lemma 3.7. Reconstructibility of partitions of n from their k-minors holds if and only
if k ≤ h(n).

Proof. By the definition of h, the smallest positive integer k for which partitions of n
cannot be reconstructed from their k-minors is h(n) + 1. Let k0 = h(n) + 1. Then there
exist partitions λ and ν of n such that Mk0(λ) = Mk0(ν). Let k ≥ k0 be arbitrary. Then
Mk(λ) consists of all (k − k0)-minors of the elements of Mk0(λ), and similarly Mk(ν)
consists of the (k − k0)-minors of the elements of Mk0(ν), so Mk(λ) = Mk(ν). Hence,
reconstructibility fails for all k ≥ h(n) + 1, and the claim follows.

To prove Theorem 2.1, it now suffices to show that h(n) = g(n) for all n. We first
prove an intermediate lemma, which provides a formula for h.

Lemma 3.8. Let n be a positive integer, and let S be the set of all solutions (a, b, s, t) to
the Diophantine equation n = (a+ 1)b+ sa+ t− 1 for which a, b, s are positive integers
and t is nonnegative. Then

h(n) = min
(a,b,s,t)∈S

(max{sa+ t, b+ t})− 1.

Proof. Let n be a positive integer. Recall that h(n) + 1 is the smallest value k for which
there are two partitions of n having the same set of k-minors. By Lemma 3.6, this
is the smallest value k for which there exists a solution (a, b, c) in positive integers to
n = (a+ 1)b+ c− 1 satisfying a ≤ c ≤ k and b+ (c mod a) ≤ k.

Let R be the set of all solutions (a, b, c) in positive integers to n = (a + 1)b + c − 1
for which a ≤ c. Let (a1, b1, c1) ∈ R. The smallest k1 for which c1 ≤ k1 and b1 +
(c1 mod a1) ≤ k1 is k1 = max{c1, b1 + (c1 mod a1)}. Hence, the smallest value k for which
two partitions of n have the same set of k-minors is min(a,b,c)∈R(max{c, b + (c mod a)}).
It follows that h(n) = min(a,b,c)∈R(max{c, b + (c mod a)}) − 1, and so it suffices to show
that min(a,b,c)∈R(max{c, b+ (c mod a)}) = min(a,b,s,t)∈S(max{sa+ t, b+ t}).
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Letm = min(a,b,c)∈R(max{c, b+(c mod a)}) and let (a0, b0, c0) ∈ R such that max{c0, b0+
(c0 mod a)} = m. Since a0 ≤ c0 by the definition of R, we can write c0 = s0a0 + t0 for
some positive integer s0 and nonnegative integer t0 < a0. Then (a0, b0, s0, t0) ∈ S. Fur-
thermore, t0 = c0 mod a0, so max{s0a0 + t0, b0 + t0} = max{c0, b0 + (c0 mod a)} = m.
Hence m is attained as a value of max{sa+ t, b+ t} for some (a, b, s, t) ∈ S.

Finally, assume that there exists a solution (a, b, s, t) ∈ S such that max{sa+t, b+t} <
m. Write sa + t = s′a + t′ where s′ is a positive integer and 0 ≤ t′ < a. Then t′ ≤ t,
so b + t′ ≤ b + t. It follows that max{s′a + t′, b + t′} ≤ max{sa + t, b + t} < m. Let
c = s′a+t′. Then t′ = c mod a and a ≤ c, so (a, b, c) ∈ R satisfies max{c, b+(c mod a)} =
max{s′a+ t′, b+ t′} < m. This is a contradiction since m is the minimum possible value
of max{s′a+ t′, b+ t′}. Hence m = min(a,b,s,t)∈S(max{sa+ t, b+ t}) as desired.

We finally have the tools to prove our main result.

Theorem 2.1. Let n and k be positive integers with k < n. For any positive integer
n 6∈ {5, 12, 21, 32}, define

g(n) = min
0≤t≤n

ρ(n+ 2− t)− 2 + t

and also define g(5) = 1, g(12) = 3, g(21) = 5, g(32) = 7. Then partitions of n can be
reconstructed from their sets of k-minors if and only if k ≤ g(n).

Proof. We wish to show that g(n) = h(n) for all n ≥ 2. By a straightforward calculation,
this holds for n = 2, 3, 5, 9, 12, 21, and 32.

For a fixed positive integer N , consider the Diophantine equation

N = (a+ 1)b+ sa+ t− 1 (3.5)

in positive integers a, b, s and nonnegative integers t. Define a minimal solution to this
equation to be a solution (a, b, s, t) for which the value max{sa+ t, b+ t} − 1 attains its
minimum. Notice that if N = n and s = 1, we have n − t + 2 = (a + 1)(b + 1). Hence,
for any nonnegative integer t we have min(max{sa+ t, b+ t})− 1 = min(max{a+ 1, b+
1})− 2 + t = ρ(n+ 2− t)− 2 + t, where the minimum is taken over all a and b satisfying
n − t + 2 = (a + 1)(b + 1). Taking the smallest such value over all nonnegative integers
t, we see that if there exists a minimal solution to (3.5) having s = 1 then the minimum
value is g(n), and so h(n) = g(n) by Lemma 3.8. Hence, it suffices to show that a minimal
solution to (3.5) having s as small as possible has s = 1.

To do so, we use induction on n. As base cases, it is easily verified that this property
holds for n = 4, 6, 10, 13, 22, and 33.

Now, let n 6∈ {1, 2, 3, 4, 5, 6, 9, 10, 12, 13, 21, 22, 32, 33} be an arbitrary positive integer
and assume that one of the minimal solutions to (3.5) for N = n − 1 having s as small
as possible has s = 1, and hence that h(n − 1) = g(n − 1). Let (a, b, s, t) be a minimal
solution to (3.5) for N = n having s as small as possible. We show that s = 1.

First, suppose t ≥ 1. Then (a, b, s, t − 1) is a solution to (3.5) when N = n − 1. We
claim that this must be a minimal solution for N = n−1. For, assume that (a′, b′, s′, t′) is
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a solution for N = n−1 satisfying max{s′a′+ t′, b′+ t′} < max{sa+ t−1, b+ t−1}. Then
(a′, b′, s′, t′+1) is a solution for N = n and max{s′a′+t′+1, b′+t′+1} < max{sa+t, b+t},
which is impossible since we assumed that (a, b, s, t) was minimal for N = n. Thus, since
(a, b, s, t − 1) is a minimal solution for N = n − 1, we have s = 1 by the inductive
hypothesis.

Now, suppose t = 0, so that n = ab + b + sa − 1, and assume to the contrary that
s ≥ 2. We consider several cases.

Case 1. Suppose sa+ 2 ≤ b. Then a ≤ (b− 2)/s and n = (a+ 1)b+ sa− 1, so we have

n ≤ ((b− 2)/s+ 1)b+ s(b− 2)/s− 1

sn ≤ (b− 2 + s)b+ sb− 2s− s
(s− 1)2 + sn+ 3s ≤ b2 + 2(s− 1)b+ (s− 1)2

√
sn+ s2 + s+ 1 ≤ b+ (s− 1)

1− s+
√
sn+ s2 + s+ 1 ≤ b

It is straightforward to verify that for a fixed n, the expression 1− s+
√
sn+ s2 + s+ 1

is an increasing function of s for s > 0, so using our assumption that s ≥ 2 we have
1− 2 +

√
2n+ 22 + 2 + 1 ≤ b. Hence

b ≥
√

2n+ 7− 1.

Since sa+ 2 ≤ b, we have h(n) = max{sa, b} = b. Notice that if (a, b, s, t) is a solution
to (3.5) for N = n − 1, then (a, b, s, t + 1) is a solution to (3.5) for N = n, and so by
Lemma 3.8 we have h(n) ≤ h(n − 1) + 1. Thus, to obtain a contradiction it suffices to
show that b ≥ h(n − 1) + 2. Notice that the function

√
2n+ 7 − 1 has a larger order of

growth than
√
n+ 1 + 3 4

√
n+ 1 + 2. The inequality

√
2n+ 7− 1 ≥

√
n+ 1 + 3 4

√
n+ 1 + 2

holds for all n ≥ 4360. It follows that for n ≥ 4360, we have b ≥
√
n+ 1 + 3 4

√
n+ 1 + 2 ≥

g(n−1)+2 = h(n−1)+2 by Theorem 2.4 and the inductive hypothesis. Hence b > h(n),
a contradiction.

For n < 4360, a computer calculation shows that in fact g(n−1) ≤
√
n+ 1+3 4

√
n+ 1−

5. In addition, the inequality
√

2n+ 7−1 ≥
√
n+ 1+3 4

√
n+ 1−3 holds for all n ≥ 1765.

By a similar argument to that above, we now have that if n ≥ 1765 then b > h(n).
For n < 1765, a computer calculation verifies that no minimal solution has sa+ 2 ≤ b

and s ≥ 2.

In each of the remaining cases, we will show that there is a solution (a′, b′, s′, t′) to
(3.5) having max{s′a′ + t′, b′ + t′} ≤ max{sa, b} and 1 ≤ s′ < s, so that we can decrease
s and still form a minimal solution, thereby obtaining a contradiction.

Case 2. Suppose a+ 2 ≤ b ≤ sa+ 1. Then we can rewrite n as follows.

n = ab+ b+ sa− 1

= (a+ 1)(b− 1) + sa+ a

= (a+ 1)(b− 1) + (b− 1) + (sa+ a− b+ 2)− 1

= a′b′ + b′ + s′a′ + t′ − 1
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where a′ = a+ 1, b′ = b− 1, and s′a′ + t′ = sa+ a− b+ 2 such that 0 ≤ t′ < a′.
To show that 1 ≤ s′, note that since b ≤ sa+ 1 we have a+ 1 ≤ sa+a− b+ 2 = s′(a+

1)+ t′. Furthermore, since a+2 ≤ b, we have s′a′ ≤ s′a′+ t′ = sa+(a+2)− b ≤ sa < sa′,
so s′ < s.

Finally, we have s′a′ + t′ ≤ sa and also b′ + t′ = (b − 1) + (s′a′ + t′) − s′a′ = (b −
1) + (sa + a − b + 2) − s′(a + 1) ≤ (b − 1) + (sa + a − b + 2) − (a + 1) = sa, so
max{s′a′ + t′, b′ + t′} ≤ sa ≤ max{sa, b} as desired.

Case 3. Suppose b ≤ a+ 1 and s ≥ 3. We write

n = ab+ b+ sa− 1

= a(b+ 1) + (b+ 1) + (sa− a− 1)− 1

= a′b′ + b′ + s′a′ + t′ − 1

where a′ = a, b′ = b+ 1, and s′a′ + t′ = sa− a− 1 such that 0 ≤ t′ < a′.
To show 1 ≤ s′, note that since s ≥ 3 and a ≥ 1 we have a ≤ 3a−(a+1) ≤ sa−a−1 =

s′a+ t′. Furthermore, since s′a′ + t′ < sa′, we must have s′ < s.
Finally, we have s′a′+ t′ ≤ sa′ = sa and also b′+ t′ ≤ b+ 1 + a− 1 = b+ a ≤ 2a+ 1 ≤

3a ≤ sa, so max{s′a′ + t′, b′ + t′} ≤ sa ≤ max{sa, b} as desired.

Case 4. Suppose b ≤ a− 1 and s = 2. We write

n = ab+ b+ sa− 1

= (a+ 1)b+ b+ (2a− b)− 1

= a′b′ + b′ + s′a′ + t′ − 1

where a′ = a+ 1, b′ = b, and s′a′ + t′ = 2a− b such that 0 ≤ t′ < a′.
To show 1 ≤ s′, note that since b ≤ a−1 we have a+1 ≤ 2a−b = s′a′+t′ = s′(a+1)+t′.

Furthermore, since s′(a + 1) + t′ = 2a− b < 2(a + 1) we have s′ ≤ 1. Hence s′ = 1 (and
therefore 1 ≤ s′ < s).

Finally, we have s′a′ + t′ < 2a = sa and also b′ + t′ ≤ a − 1 + a < 2a = sa, so
max{s′a′ + t′, b′ + t′} ≤ sa ≤ max{sa, b} as desired.

In the remaining two cases, we finally discover the significance of the seemingly mys-
terious values 3, 5, 9, 12, 21, and 32.

Case 5. Suppose b = a and s = 2. Then

n = ab+ b+ sa− 1

= a2 + 3a− 1

= (a+ 2)(a− 1) + 2a+ 1

= (a+ 2)(a− 1) + (a− 1) + ((a+ 2) + 1)− 1

= a′b′ + b′ + s′a′ + t′ − 1

where a′ = a+ 2, b′ = a− 1, and s′ = t′ = 1. Clearly 1 ≤ s′ < s.
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Notice that b′ + t′ = a < 2a = sa, and s′a′ + t′ = a + 3 ≤ 2a if and only if a ≥ 3,
so when a ≥ 3 we have max{s′a′ + t′, b′ + t′} ≤ sa ≤ max{sa, b}. If a = 1 or a = 2, we
obtain the extraneous values n = 3 and n = 9.

Case 6. Suppose b = a+ 1 and s = 2. Then

n = ab+ b+ sa− 1

= a2 + 4a

= (a− 1)(a+ 3) + 2a+ 3

= (a− 1)(a+ 3) + (a+ 3) + (a+ 1)− 1

= a′b′ + b′ + s′a′ + t′ − 1

where a′ = a−1, b′ = a+3, s′ = 1, and t′ = 2. For a ≥ 5, we have s′a′+t′ = a+1 ≤ 2a = sa
and b′ + t′ ≤ a + 3 + 2 ≤ 2a = sa, and so max{s′a′ + t′, b′ + t′} ≤ sa ≤ max{sa, b}. For
a = 1, 2, 3, and 4, we obtain the extraneous values n = 5, 12, 21, and 32, for which every
minimal solution to (3.5) has s ≥ 2.

This completes the proof.

4 Applications and Future Work

In this section, we present two direct applications of our results and propose a natural
extension of the partition reconstruction problem to Young tableaux.

4.1 The Character Reconstruction Problem for Sn

Suppose G is a finite group andH is a collection of subgroups of G. For any representation
x of G over a field of characteristic zero, define Irr (x) to be the set of irreducible rep-
resentations appearing as composition factors in the decomposition of x into irreducible
representations. Similarly, if χ is the character corresponding to x, define Irr (χ) to be
the set of irreducible characters corresponding to the elements of Irr(x). The equivalence
relation ∼H on the irreducible representations of G is defined by x ∼H y if and only if
Irr (x|H) = Irr (y|H) for all H ∈ H, where x|H denotes the restriction of x to H. The
equivalence χ ∼H φ is defined in a similar manner for irreducible characters χ and φ of
G.

The character reconstruction problem for finite groups is stated in [8] as follows. For
which collections H does χ ∼H φ imply that χ = φ for any two irreducible characters χ
and φ of G?

Consider the symmetric group Sn, the group of permutations of {1, 2, . . . , n}. It is
well known that there is a one-to-one correspondence between irreducible representations
of Sn and partitions of n. (See [4], [5], or [11] for a more detailed discussion of the
representation theory of the symmetric groups.) There is a natural way to construct this
correspondence such that if H is the stabilizer of some k-element subset of {1, 2, . . . , n},
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then the representation xλ associated with a partition λ satisfies Irr(xλ|H) = {xµ : µ ∈
Mk(λ)}. This is known as the Branching Theorem.

Now, suppose H consists of a single subgroup, H, which stabilizes some k points in
{1, 2, . . . , n}. It follows from the Branching Theorem that an irreducible representation
χλ of Sn can be recovered from its restriction to H if and only if λ can be reconstructed
from its set of k-minors. This argument holds for characters as well as representations,
so we obtain the following corollary to Theorem 2.1.

Corollary 4.1. Let n and k be positive integers with k < n, and let H ⊂ Sn be the
stabilizer of a k-element subset of {1, 2, . . . , n}. Then any irreducible representation x of
Sn (and hence its character χ) can be reconstructed from the set of irreducible composition
factors of x|H if and only if k ≤ g(n).

4.2 An Application to Permutation Reconstruction

A k-reduction of a permutation p = p1p2 . . . pn of {1, 2, . . . , n} is a permutation of
{1, 2, . . . , n− k} formed by re-numbering the elements of an (n− k)-element subsequence
of p1p2 . . . pn such that the relative order of the elements is preserved. For instance, 132 is
a 2-reduction of the permutation p = 31524 by considering the subsequence 154 of p. The
problem of reconstructing permutations from certain sets or multisets of k-reductions has
been of much recent interest ([1], [2], [3], [9], [10]).

A natural variant on this problem that is less well understood is the reconstruction
of permutations from their cycle k-minors. Given a permutation written as a product
of disjoint cycles, a cycle k-minor is formed by removing some k of the elements and re-
numbering the remaining elements so as to preserve their order. For example, (315)(24)
is a cycle 1-minor of (4162)(35), formed by deleting the 2 from the cycle (4162), and
then subtracting 1 from every remaining number that is larger than 2. It has been shown
[7] that all permutations in Sn can be reconstructed from their sets of cycle 1-minors if
and only if n ≥ 6, and conjectures that for any positive integer k, we can reconstruct
permutations in Sn from their cycle k-minors for sufficiently large n.

Theorem 2.1 provides an interesting insight into this problem. Recall that the conju-
gacy classes of Sn consist of all permutations which are a product of disjoint cycles having
a given number of cycles of each length. Hence we can associate each partition λ of n
with the conjugacy class in Sn consisting of the permutations p having one λi-cycle for
each i in the decomposition of p into disjoint cycles. For example, the partition [3, 3, 2]
is associated with the permutations in S8 having disjoint cycle decomposition of the form
(abc)(def)(gh).

Clearly, the partition associated with a cycle 1-minor of a permutation p is a 1-minor
of the partition associated with p. Thus we have the following corollary to Theorem 2.1.

Corollary 4.2. The conjugacy class of a permutation can be reconstructed from its set of
cycle k-minors whenever k ≤ g(n).

In the case k = 1, this is not sufficient to reconstruct the permutation as well, since
reconstructibility holds for n ≥ 3 for partitions, whereas n ≥ 6 is required to reconstruct
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permutations from their cycle 1-minors. Nevertheless, this may be a useful intermediate
step in solving this conjecture.

4.3 Reconstructing Young Tableaux

Having solved the partition reconstruction problem, it would be interesting to extend
this question to Young tableaux, which also arise naturally in representation theory. A
(standard) Young tableau of size n is a Young diagram of a partition of n whose squares
are labeled with the numbers 1, 2, . . . , n such that the labels are increasing from left to
right in each row and from top to bottom in each column.

We propose a natural definition of a minor of a Young tableau inspired by jeu de
taquin, or “the teasing game.” (See [11], pp. 419-425.) Suppose we remove a square X
and its label from a Young tableau and re-number the squares from 1 to n − 1, again
preserving the relative order of the labels. If X was a corner square, we are left with a
tableau of size n− 1. Otherwise, consider the square Y directly to the right of X and the
square Z below X (note that either of Y or Z may not exist). If Y has a smaller label
than Z or Z does not exist, slide Y to the left, and otherwise slide Z up to fill in the
missing square. Continue this sliding process until a new tableau is formed. We define
this to be a 1-minor of the tableau, and similarly define a k-minor to be a tableau formed
by taking k successive 1-minors.

Theorem 2.1 shows that we can reconstruct the shape of the tableau from its set of k-
minors whenever k ≤ g(n), since every possible k-minor of the corresponding partition will
appear as the shape of some k-minor formed by removing corner squares in succession.
However, this is not always sufficient to reconstruct the labeling of the squares. For
example, the two tableaux of size 4 shown below have the same set of 1-minors. This
prompts the question of which n and k have the property that any tableau with n squares
can be reconstructed from its set of k-minors.
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