
Part (i) of Schur-Zassenhaus

The Schur-Zassenhaus Theorem is a fundamental result about coprime actions in 
finite group theory. Specifically, what it says is:

Let ﻿ be a finite group, and let ﻿ be a normal subgroup of  such that 
﻿. Then:

(i) ﻿ has a subgroup ﻿ such that ﻿.

(ii) Any two such subgroups of ﻿ are conjugate in ﻿.

The purpose of this note is to give a proof of (i) (referred to as S-Z(i) for short) 
using affine geometry over fields of prime order. The two reductions that carry the 
reasoning into the case where ﻿ is an elementary abelian group of prime-power 
order are standard; after that, and after the structure of ﻿ is narrowed down, I 
don’t know how different the reasoning employed here turns out to ultimately be 
from reasoning used elsewhere.

Recognizing complements to ﻿ in ﻿

A complement to ﻿ in ﻿, by definition, is a subgroup consisting of one element 
from each coset of ﻿ in ﻿. Such a subgroup is easily seen to be isomorphic to 

﻿. Since there are ﻿ cosets of ﻿ in ﻿, this means any complement to 
﻿ in ﻿ has order ﻿. In the context of the Schur-Zassenhaus Theorem, 

however, a convenient converse is easy and useful to prove:
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Claim. If ﻿ is a subgroup of ﻿ and ﻿, then ﻿ is a complement to ﻿ 
in ﻿.

Proof of Claim. If ﻿ does not consist of one element from each coset of ﻿ in ﻿, 
then, since ﻿, some coset of ﻿ will contain two different elements of 

﻿; call these elements ﻿ and ﻿. Then, since ﻿ and ﻿ are in the same coset of ﻿, 
﻿. Also, since ﻿ and ﻿ are elements of ﻿, ﻿. Since ﻿ by 

assumption, ﻿. Then ﻿ is nontrivial, since ﻿.

But ﻿ must be trivial: ﻿ and ﻿, so 
﻿. Therefore ﻿. 

This contradiction proves the Claim.

It’s worth noting that S-Z(i) is trivially true when ﻿, since ﻿ itself is a 
complement to ﻿ in that case. Therefore, in what follows, we will assume 

﻿.

The first reduction

In finite group theory, when we refer to a minimal normal subgroup of ﻿, we don’t 
want to refer to the trivial subgroup. We know the trivial subgroup is a normal 
subgroup of any group, so we exclude that from consideration (otherwise, we’d 
always be referring to it): a minimal normal subgroup of ﻿ is a normal subgroup 
which is minimal, with respect to inclusion, among normal subgroups other than 
the trivial subgroup. (This is analogous to the usage of “maximal” in “maximal 
subgroup”.) This appears in the statement of Reduction 1:

Reduction 1. If  is a counterexample to S-Z(i) minimizing ﻿, then ﻿ is a minimal 
normal subgroup of ﻿.

Proof of Reduction 1. Suppose not; then there is a normal subgroup ﻿ which 
is a proper subgroup of ﻿. Then ﻿. In fact, ﻿ is a normal 
subgroup satisfying the hypothesis of S-Z(i):
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from which it follows that ﻿.

Since ﻿ is nontrivial, ﻿. Then the minimality of ﻿, as a 
counterexample to S-Z(i), implies that S-Z(i) applies to ﻿. So let ﻿ be a 
complement to ﻿ in ﻿. Note that 

﻿.

Now let’s lift back to ﻿. Let ﻿ be the lift of ﻿ from ﻿ to ﻿. Then 
﻿. But, as a lift, ﻿ contains ﻿ as a normal subgroup. In 

fact, the conditions of S-Z(i) apply to ﻿, since

and therefore ﻿. Also, we know that

so ﻿. Then S-Z(i) applies to ﻿ and implies that ﻿ has a complement ﻿ to 
﻿, whose order is ﻿. This implies, as explained earlier, that ﻿ is 

a complement to ﻿ in ﻿. But then ﻿ isn’t a counterexample to S-Z(i), so this 
contradiction establishes Reduction 1.

The second reduction

The following is an instance of what is sometimes called ‘the Frattini argument’, 
although, as Isaacs [1] has observed, maybe it’s more accurate to call it a Frattini 
argument, since reasoning like this has so many variations on it.

Reduction 2. If ﻿ is a counterexample minimizing ﻿, then ﻿ is a power of a 
prime.

Proof of Reduction 2. As already established, if ﻿ is a counterexample to S-Z(i), 
we must have ﻿. Then let ﻿ be a prime factor of ﻿.

gcd (∣N/K∣, [G/K : N/K]) = gcd (∣N/K∣, [G : N ]) ∣ gcd (∣N ∣, [G : N ]) = 1
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Since ﻿, ﻿. This means any power of ﻿ dividing  will divide ﻿. 
Therefore, all Sylow ﻿-subgroups of ﻿ are Sylow ﻿-subgroups of ﻿. Let ﻿ be a 
Sylow ﻿-subgroup of ﻿. Then the Sylow counting theorem tells us (again 
following Isaacs, using ﻿ to denote the number of Sylow ﻿-subgroups of the 
finite group ﻿) that 

and 

and therefore 

Since ﻿, this means the number of cosets of ﻿ in ﻿ 
containing elements normalizing ﻿ is ﻿. Therefore every coset of ﻿ in ﻿ 
contains elements normalizing ﻿.

If ﻿ (that is, if ﻿ is not a normal subgroup of ﻿), then S-Z(i) applies 
to ﻿:

Since ﻿, we have  

and therefore S-Z(i) says there is a complement, ﻿, to ﻿ in ﻿. Then, 
since 

﻿, ﻿ is a complement to ﻿ in ﻿ and ﻿ is not a counterexample in 
this case. 

Then we are forced to conclude that, in the minimal counterexample ﻿, 
﻿ so ﻿ and ﻿ is a normal subgroup of ﻿. Since ﻿ is a 

subgroup of ﻿ and ﻿ is a minimal normal subgroup of ﻿, this forces ﻿ so 
that ﻿ is a power of ﻿. Reduction 2 is done.
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Now write ﻿, where ﻿ is a positive integer. In the rest of the proof, ﻿ is a 
counterexample to S-Z(i) of minimal order, so that Reductions 1 and 2 may be 
applied.

What does that tell us about ﻿?

If ﻿ is a characteristic subgroup of ﻿ and ﻿ is a normal subgroup of ﻿, then 
﻿ is a normal subgroup of ﻿. Then, the fact that ﻿ is a minimal normal 

subgroup of ﻿ implies that ﻿ has no proper characteristic subgroups.

Definition. Let ﻿ be a prime and let ﻿ be a positive integer. A group of order ﻿ is 
called elementary abelian if it’s isomorphic to the Cartesian product of ﻿ cyclic 
groups of order ﻿.

Theorem. If ﻿ is a nontrivial finite group whose order is a power of a prime, and ﻿ 
has no proper characteristic subgroups, then ﻿ is elementary abelian.

Proof of Theorem. Suppose ﻿, where ﻿ is a prime and ﻿ is a positive 
integer. We establish the conclusion using two steps:
Step 1. ﻿ is abelian.

Proof of Step 1. Since ﻿ where ﻿ is prime and ﻿ is a positive integer, the 
center ﻿ is nontrivial. Since the center is always a characteristic subgroup, 
the condition on ﻿ implies that ﻿. In other words, ﻿ is abelian, and Step 
1 is done.

Step 2. ﻿ is elementary abelian.

Proof of Step 2. Since ﻿ is abelian, the subset of ﻿ consisting of the identity and 
all the elements of order ﻿ is a subgroup of ﻿. Its definition makes it clear that it’s 
also a nontrivial characteristic subgroup of ﻿. Therefore it must be all of ﻿, from 
which it’s easy to see that ﻿ is elementary abelian. Step 2 is done, and the 
Theorem is proven.
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The sets on which ﻿ acts, and the correspondence 
between them

The heavy lifting of this proof is accomplished by considering the action of ﻿ on a 
certain pair of sets, each  consisting of ﻿ elements.

To start defining these ﻿-actions, we need to make some choices. Let 
﻿ be a set of representatives for the cosets of ﻿ in ﻿. Also, let ﻿ be 

chosen as a subgroup of ﻿ such that 
﻿.

Now we want to choose, for each ﻿ with , an ﻿ that cycles 
around the ﻿ right cosets of ﻿ contained in ﻿. First of all, this means 

﻿, which is equivalent to: 

One right coset of ﻿ that is contained in ﻿ is ﻿. Since ﻿, ﻿ cycles the 
right cosets of ﻿ in ﻿ as long as we don’t have ﻿. In other words, 
what we want is: 

G

G

p[G:N ]

G

t ​, … , t ​1 [G:N ] N G V

N

[N : V ] = p

i 1 ≤ i ≤ [G : N ] x ​ ∈i N

p V Nt ​i Nt ​x ​ =i i

Nt ​i

Nt ​x ​ =i i Nt ​,  or, equivalently,i

Nt ​x ​t ​ =i i i
−1 N ,  or, equivalently,

t ​x ​t ​ ∈i i i
−1 N ,  or, equivalently,

x ​ ∈i N

V Nt ​i V t ​i x ​ ∈i N x ​i

V Nt ​i V t ​x ​ =i i V t ​i

V t ​x ​ =i i  V t ​,  or, equivalently,i
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t ​x ​t ​ ∈i i i
−1 / V ,  or, equivalently,
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−1

i
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So choosing ﻿ is both necessary and sufficient to enable ﻿ to act 
as desired. For each ﻿ with ﻿, now fix a choice of 
. 

One of the sets on which ﻿ acts is the set of choices of a right coset of ﻿ within 
each coset of ﻿. An element of this looks like ﻿, where 

﻿ for all ﻿ with 
﻿. ﻿ acts on this set by right-multiplication; i.e., by sending 

﻿ to 
﻿.

The other set on which ﻿ acts is the set of functions ﻿. This set 
can be naturally regarded as an affine space over ﻿. 

We define a bijection between these sets by identifying the function 
﻿ with the set of right coset choices ﻿. This is how 

the action of ﻿ is carried over from the former set to the latter, and how the affine 
space structure is carried over from the latter to the former. This enables us to use 
these identifications to think of ﻿ as acting on a single set, which has the 
structure of a ﻿-affine space on it. This set will be denoted ﻿, and called the 
space of coset functions, short for “functions from the cosets of ﻿ in ﻿ to 
”.

Since we have these ﻿-actions set up, we wish to prove a few basic facts about 
them: ﻿ acts faithfully (on either set, since these actions are equivalent), ﻿ acts 
by affine transformations, and ﻿ acts by translations. Then it will be possible to 
assemble these into a proof of S-Z(i).

﻿ acts faithfully

To say that ﻿ preserves the choice of ﻿ within ﻿ is to say that 
﻿. To say that is true over all ﻿ with ﻿ is to say that 

x ​ ∈i N ∖ t ​V t ​i
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i x ​i
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−1

i
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u ​ ∈i N i

1 ≤ i ≤ [G : N ] g ∈ G
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{V t ​u ​g ⊂i i Nt ​g} ​ =i 1≤i≤[G:N ] {V t ​g(g u ​g) ⊂i
−1

i Nt ​g} ​i 1≤i≤[G:N ]
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Since ﻿, ﻿, and ﻿ is abelian, ﻿. Since the 
﻿ form a set of coset representatives for ﻿ in ﻿, and ﻿ normalizes ﻿, 

﻿ is the intersection of all ﻿-conjugates of ﻿. In other words, it’s 
the core of ﻿ in . Since ﻿ is a minimal normal subgroup of ﻿ and 

﻿, the core of ﻿ in ﻿ must be trivial so ﻿ acts faithfully on ﻿.

In fact, this argument shows also that any nonidentity element of ﻿ acts without 
fixed points on ﻿.

﻿ acts affinely

The next step is to prove that ﻿ acts by affine transformations on ﻿. However, 
because of fundamental differences in  how the underlying geometry works, it’s 
helpful to divide this proof into cases depending on the value of ﻿: ﻿ might be an 
odd prime, or ﻿ might be 2. 

﻿ acts affinely when ﻿ is an odd prime

First, assume that ﻿ is an odd prime. Unless ﻿ and ﻿, the affine group 
﻿acts with transitivity degree 2 (i.e., doubly transitively, but not 

triply transitively) on the ﻿ points of a ﻿-dimensional affine space over ﻿. (If 
﻿ and ﻿, then the fact that ﻿ means all permutations 

are affine transformations, so the conclusion follows automatically. So, if ﻿, 
the reader is free to assume that ﻿, though it isn’t strictly necessary.) This 
means we can use a ternary relation on coset functions to prove the affineness of 
the action of ﻿:

Affineness Lemma, odd prime version. If ﻿ is a positive integer, a permutation of a 
﻿-dimensional affine space over ﻿ is affine if and only if it sends 3-term 

arithmetic progressions to 3-term arithmetic progressions.

Proof of Affineness Lemma. Since , a permutation of affine space is affine if 
and only it preserves, for all ﻿, the binary operation combining ﻿ and ﻿ to 

t ​V t ​ ⊂i
−1

i N u ​ ∈i N N u ​t ​V t ​u ​ =i
−1

i
−1

i i t ​V t ​i
−1

i

t ​i N G N t ​V t ​i
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i

​ t ​V t ​⋂1≤i≤[G:N ] i
−1

i G V

V G N G [N : V ] =
p > 1 V G G Ψ

N

Ψ
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G Ψ

p p
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p p = 3 d = 1
AGL ​(Z/(p))d

pd d Z/(p)
p = 3 d = 1 AGL ​(Z/(3)) ≅1 S ​3

p = 3
d ≥ 2

G

d

d Z/(p)

p ≥ 3
t ∈ Z/(p) u v
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obtain ﻿.

If a permutation sends 3-term arithmetic progressions to 3-term arithmetic 
progressions, then it preserves the binary operation combining ﻿ and ﻿ to obtain 

﻿, since ﻿ is the third term of the arithmetic progression beginning 
with ﻿ and ﻿. Then it must also preserve ﻿, and 

﻿. Continuing in this fashion, we see this 
permutation must preserve ﻿ for all positive 
integers ﻿. This allows ﻿ to be an arbitrary element of ﻿, so the permutation 
must be affine.

If a permutation is affine, then, for any distinct points ﻿ and ﻿ in the space, it 
preserves the binary operation combining ﻿ and ﻿ to obtain ﻿, which 
completes the 3-term arithmetic progression whose first two terms are ﻿ and ﻿. 
So then it sends 3-term arithmetic progressions to 3-term arithmetic progressions, 
and the Lemma is proven.

 ﻿ is an ordered triple of functions from ﻿ to ﻿ forming an 
arithmetic progression if and only if, for all ﻿ with ﻿, the ﻿th 
coordinates ﻿ form an arithmetic progression in ﻿. To say that 
is to say we have right ﻿-cosets chosen as 

such that ﻿. Equivalently, since this arithmetic 
progression is obtained by right-multiplying by a fixed element of ﻿, it is more 
pertinent to say that 

﻿. Right-
multiplying by  takes these choices of right ﻿-cosets within their respective ﻿-
cosets to 

t ⋅ u + (1 − t)v

u v

2v − u 2v − u

u v 3v − 2u = 2(2v − u) − v

4v − 3u = 2(3v − 2u) − (2v − u)
k ⋅ v − (k − 1)u = k ⋅ v + (1 − k)u

k k Z/(p)

u v

u v 2v − u

u v

(a, b, c) G/N Z/(p)
i 1 ≤ i ≤ [G : N ] i

(a(i), b(i), c(i)) Z/(p)
V

V t ​x ​ ⊂i i

a(i)
Nt ​,i

V t ​x ​ ⊂i i
b(i)

Nt ​,i
V t ​x ​ ⊂i i

c(i)
Nt ​i

b(i) − a(i) = c(i) − b(i)
G

(t ​x ​) t ​x ​ =i i
a(i) −1

i i
b(i) (x ​) x ​ =i

a(i) −1
i
b(i) (x ​) x ​ =i

b(i) −1
i
c(i) (t ​x ​) t ​x ​i i

b(i) −1
i i

c(i)

g V N

( )
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To say that these chosen right ﻿-cosets within the ﻿-coset ﻿ are in 
arithmetic progression is to say that 

which we were already assuming. As ﻿ varies over all cosets of ﻿ in ﻿, so 
does ﻿. Therefore the arithmetic progression condition holds in each 
coordinate of ﻿. This means any ﻿ sends 3-term arithmetic 
progressions to 3-term arithmetic progressions and therefore ﻿ acts affinely, as 
claimed.

﻿ acts affinely when ﻿

Now we assume that ﻿. Unless ﻿, the affine group ﻿ 
acts with transitivity degree 3 (i.e., triply transitively, but not quadruply 
transitively) on the ﻿ points of a -dimensional affine space over ﻿. This 
means that there is no ternary relation involving coset functions we can use to 
prove the affineness of the action of ﻿ in this case. (If ﻿, then the fact that 

﻿ means the conclusion is automatic, as before. If ﻿, then 
the fact that ﻿ means the conclusion is likewise automatic. So 
the reader is free to assume that ﻿, though only ﻿ is strictly necessary.) 
Instead, we can use the only quaternary relation preserved by the action of 

﻿:

V t ​x ​g ⊂i i

a(i)
Nt ​g,i

V t ​x ​g ⊂i i
b(i)

Nt ​g,i

V t ​x ​g ⊂i i
c(i)

Nt ​gi

V N Nt ​gi

(x ​g) (x ​g) =i
a(i) −1

i
b(i) (x ​g) (x ​g),  or equivalently,i

b(i) −1
i
c(i)

g (x ​) x ​g =−1
i

a(i) −1
i

b(i)
g (x ​) x ​g,  or equivalently,−1

i

b(i) −1
i

c(i)

(x ​) x ​ =i
a(i) −1

i
b(i) (x ​) x ​i

b(i) −1
i
c(i)

Nt ​i N G

Nt ​gi
(a , b , c )g g g g ∈ G

G

G p = 2

p = 2 d = 1 or 2 AGL ​(Z/(2))d

2d d Z/(2)

G d = 1
AGL ​(Z/(2)) ≅1 S ​2 d = 2

AGL ​(Z/(2)) ≅2 S ​4

d ≥ 3 d ≥ 2

AGL ​(Z/(2))d
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Affineness Lemma, ﻿ version. Let ﻿ be an integer. Then a permutation of 
a ﻿-dimensional affine space over  is affine if and only if it sends planes to 
planes.

Proof of Affineness Lemma. A permutation is affine if and only if it preserves all 1-
sum linear combinations of points in the space. Since ﻿, a 
permutation of an affine space over ﻿ is affine if and only if it preserves all 
sums of oddly many points in the space. Any such sum can be built from sums of 
3 points: ﻿, 

﻿, and 
so forth. So a permutation is affine if and only if it preserves all sums of 3 points in 
the space. That is, a permutation ﻿ of the space is affine if and only if, for all ﻿, ﻿, 
and ﻿ in the space, ﻿.

If ﻿, ﻿, and ﻿ are distinct, then they cannot be collinear, since each line in the 
space consists of just 2 points. But there is a unique plane passing through them, 
and the sum of the points on this plane is the zero vector. (And, conversely, any 
set of 4 points in the space forms a plane when their sum is the zero vector.) That 
means the fourth point on this plane is ﻿.

But then the affineness condition says that ﻿ takes the plane 
﻿ to the set 

﻿. Since the points in this new set also have a sum 
equal to the zero vector and they are distinct, they, too, form a plane. Since ﻿, ﻿, 
and ﻿ are arbitrary distinct points in the space, this proves ﻿ preserves all planes 
in the space. Conversely, any permutation of the space sending planes to planes, 
for this reason, satisfies the affineness condition described above. We are done.

In any coordinate system (as long as the projection maps to individual coordinates 
are affine maps, as happens here because the coordinates define the affine 
structure) for an affine space over ﻿, ﻿ if and only if, for 
all ﻿ indexing the set of coordinates, ﻿. 

﻿, in turn, is equivalent to saying that the values, in ﻿, assumed by ﻿, ﻿, ﻿, 
and ﻿ are all equal, or equal in pairs (e.g., ﻿ while ﻿).

p = 2 d ≥ 2
d Z/(2)

Z/(2) = {0, 1}
Z/(2)

v ​ +1 v ​ +2 v ​ +3 v ​ +4 v ​ =5 (v ​ +1 v ​ +2 v ​) +3 v ​ +4 v ​5

v ​ +1 v ​ +2 v ​ +3 v ​ +4 v ​ +5 v ​ +6 v ​ =7 (v ​ +1 v ​ +2 v ​ +3 v ​ +4 v ​) +5 v ​ +6 v ​7

f u v

w (u + v + w) =f u +f v +f wf

u v w

−(u + v + w) = u + v + w

f {u, v,w,u + v +
w}
{u , v ,w ,u +f f f f v +f w }f

u v

w f

Z/(2) u + v + w + x = 0
i u ​ +i v ​ +i w ​ +i x ​ =i 0 u ​ +i v ​ +i w ​ +i x ​ =i

0 Z/(2) u ​i v ​i w ​i

x ​i u ​ =i w ​ =i 1 v ​ =i x ​ =i 0
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﻿ is a set of 4 (different) coset functions forming a plane if and only if, 
for all ﻿ with 

﻿, the ﻿th coordinates ﻿ add up to ﻿ in . 
To say that is to say we have right ﻿-cosets chosen as 

such that ﻿ are all equal, or equal in pairs. Right-multiplying 
by ﻿ preserves equality/distinctness of the right ﻿-coset choices, so it preserves 
their being all equal, or being equal in pairs, within ﻿, for all ﻿. Therefore the 
coplanarity condition holds in each coordinate of ﻿. This means any 

﻿ sends planes to planes, and therefore ﻿ acts affinely, as claimed.

﻿ acts by translations

It follows from the normality of ﻿ that ﻿ fixes each coset of ﻿ in ﻿. When we 
break up each coset of ﻿ into ﻿ right cosets of ﻿, then, since ﻿ is a ﻿-group, ﻿ 
either cycles the right cosets of ﻿ around or it fixes all of them.

The choice of ﻿, as an element of ﻿, was made so that it does not fix ﻿, so ﻿ 
must cycle around the ﻿ right ﻿-cosets in each ﻿-coset. That also means that 
every element of ﻿ cycles around these cosets exactly the way some power of ﻿ 
does. A power of ﻿, say ﻿, sends the right ﻿-coset ﻿ to ﻿, for all 

﻿. Therefore any element of ﻿ acts by translations on the right cosets 
of ﻿ in ﻿, and, since ﻿ is arbitrary, ﻿ acts by translations on the whole space of 
coset functions.

{a, b, c, d}
i

1 ≤ i ≤ [G : N ] i {a(i), b(i), c(i), d(i)} 0 Z/(2)
V

V t ​x ​ ⊂i i
a(i)

Nt ​,i
V t ​x ​ ⊂i i

b(i)
Nt ​,i

V t ​x ​ ⊂i i
c(i)

Nt ​,i
V t ​x ​ ⊂i i

d(i)
Nt ​i

{a(i), b(i), c(i), d(i)}
g V

Nt ​i i

{a , b , c , d }g g g g

g ∈ G G

N

N N N G

N p V N p N

V

x ​i N V t ​i N

p V N

N x ​i

x ​i x ​i
T V V t ​x ​i i

E V t ​x ​i i
E+T

E ∈ Z/(p) N

V Nt ​i i N
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Putting all the pieces together 

﻿ acts by affine transformations on  ﻿, and, in this action, the normal subgroup 
 acts by translations. For  ﻿, define  ﻿ to mean that there is an 
element of  ﻿ translating  ﻿ to  ﻿. Since every nonidentity element of ﻿ acts 
without fixed points on ﻿, every orbit of  ﻿ on  ﻿ has size  ﻿.

Affine structure on  ﻿: Let  ﻿. Suppose  ﻿. We need to 
verify that  ﻿ and  ﻿ imply that 

﻿.

So let  ﻿ be the element of  ﻿ such that  ﻿. Then it’s easy to compute that 
applying the translation  ﻿ carries  ﻿ to 

﻿ . This means the affine space structure present on  ﻿ is inherited 
by  ﻿.

Groups acting on  ﻿:  ﻿ acts affinely on  ﻿, and ﻿’s affine structure is inherited 
by  ﻿. So  ﻿ acts affinely on  ﻿. In the action on  ﻿,  ﻿ acts trivially. So 
the affine action of  ﻿ on  ﻿ gives us an affine action of  ﻿ on  ﻿.

Using the averaging trick:  ﻿ is an affine space over  ﻿, and  ﻿ is an 
affinely acting group whose order is a nonmultiple of  ﻿. This means that it’s 
possible to average over the action of  ﻿ to obtain a fixed point for it: 
specifically, consider

 for  ﻿.

Back to  ﻿ and  ﻿: Let  ﻿ be an element of the  ﻿-equivalence class  ﻿. Then 
 has  ﻿ images under the action of  ﻿ on coset functions:  ﻿ is a fixed 
point for the action of  ﻿, but every nonidentity element of  ﻿ has no fixed 
points in its action on  ﻿. This means that, by the Orbit-Stabilizer Theorem, the 
stabilizer of  ﻿ under the action of  ﻿ is a subgroup of order  ﻿. 
As proven earlier, this subgroup is a complement to  ﻿ in  ﻿. This proves S-Z(i), so 
we are done.

G Ψ N

f ​, f ​ ∈1 2 Ψ f ​ ∼1 f ​2

N f ​1 f ​2 N

Ψ N Ψ ∣N ∣

Ψ/ ∼ λ,μ ∈ Z/(p) u, v,w ∈ Ψ
u ∈′ Ψ u ∼ u′ λu + μv + (1 − λ − μ)w ∼ λu +′

μv + (1 − λ − μ)w

τ N u =τ u′

λτ λu + μv + (1 − λ − μ)w λu +′ μv +
(1 − λ − μ)w Ψ

Ψ/ ∼

Ψ/ ∼ G Ψ Ψ
Ψ/ ∼ G Ψ/ ∼ Ψ/ ∼ N

G Ψ/ ∼ G/N Ψ/ ∼

Ψ/ ∼ Z/(p) G/N
p

G/N

=h ​ ​v ,
∣G/N ∣

1

g∈G/N

∑ g

v ∈ Ψ/ ∼

Ψ G h ∈ Ψ ∼ h h

∣N ∣ G =h h/ ∼
G/N N

Ψ
h G ∣G∣/∣N ∣ = [G : N ]

N G
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