Part (i) of Schur-Zassenhaus

The Schur-Zassenhaus Theorem is a fundamental result about coprime actions in
finite group theory. Specifically, what it says is:

Let GG be a finite group, and let N be a normal subgroup of GG such that
ged ([N, [G : N]) = 1. Then:

(i) G has a subgroup H such that H =~ G/N.

(ii) Any two such subgroups of GG are conjugate in G.

The purpose of this note is to give a proof of (i) (referred to as S-Z(i) for short)
using affine geometry over fields of prime order. The two reductions that carry the
reasoning into the case where N is an elementary abelian group of prime-power
order are standard; after that, and after the structure of IV is narrowed down, |
don't know how different the reasoning employed here turns out to ultimately be
from reasoning used elsewhere.

Recognizing complements to N in GG

A complement to N in GG, by definition, is a subgroup consisting of one element
from each coset of N in GG. Such a subgroup is easily seen to be isomorphic to
G/N. Since there are [G : N| cosets of N in G, this means any complement to
N in G has order [G : NJ. In the context of the Schur-Zassenhaus Theorem,
however, a convenient converse is easy and useful to prove:
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Claim. If H is a subgroup of G and |H| = [G : N], then H is a complement to N
inG.

Proof of Claim. If H does not consist of one element from each coset of N in G,
then, since |H| = [G : N|, some coset of N will contain two different elements of
H; call these elements x and y. Then, since & and y are in the same coset of IV,
zy~' € N. Also, since z and y are elements of H, zy— € H. Since z # y by
assumption, zy ! = 1. Then H N N is nontrivial, since zy '€ HNN.

But H N N must be trivial: |[H N N| | |[H|and |[H N N| | |N]|, so
|[HNN| | ged(|H|,|N|) =ged (|G : NJ,|N|) = 1. Therefore |[H N N| = 1.
This contradiction proves the Claim.

It's worth noting that S-Z(i) is trivially true when |N| = 1, since G itself is a

complement to IV in that case. Therefore, in what follows, we will assume |N| >
1.

The first reduction

In finite group theory, when we refer to a minimal normal subgroup of G, we don't
want to refer to the trivial subgroup. We know the trivial subgroup is a normal
subgroup of any group, so we exclude that from consideration (otherwise, we'd
always be referring to it): a minimal normal subgroup of G is a normal subgroup
which is minimal, with respect to inclusion, among normal subgroups other than
the trivial subgroup. (This is analogous to the usage of “maximal” in “maximal
subgroup”.) This appears in the statement of Reduction 1:

, then IN is a minimal

Reduction 1. If G is a counterexample to S-Z(i) minimizing |G
normal subgroup of G.

Proof of Reduction 1. Suppose not; then there is a normal subgroup K < G which
is a proper subgroup of N. Then N/K < G/K. Infact, N/K is a normal
subgroup satisfying the hypothesis of S-Z(i):
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ged (|N/KJ,|G/K : N/K]) = ged (|[N/K|, |G : N]) | ged (N, [G : N]) =1

from which it follows that ged (|N/K|,|G/K : N/K]) = 1.

Since K is nontrivial, |G/ K| < |G|. Then the minimality of G, as a
counterexample to S-Z(i), implies that S-Z(i) applies to G/K. So let L be a
complement to N /K in G/K. Note that

|L|=[G/K: N/K| =[G : NJ].

Now let’s lift back to G. Let C be the lift of L from G /K to G. Then

|C| = |L||K| = [G : N]|K|.But, as a lift, C contains K as a normal subgroup. In
fact, the conditions of S-Z(i) apply to C, since

ged (|K|, [C: K]) = ged (|K|, [G : N]) | ged (IN], |G : N]) =1

and therefore ged (| K|, [C : K]) = 1. Also, we know that
|C| = [L||K| =[G : N][K| < [G: N]IN| = |G|

so |C| < |G|. Then S-Z(i) applies to C' and implies that C' has a complement H to
K, whose order is |C'/K| = [G : N|. This implies, as explained earlier, that H is
a complement to IV in G. But then G isn't a counterexample to S-Z(i), so this
contradiction establishes Reduction 1.

The second reduction

The following is an instance of what is sometimes called ‘the Frattini argument’,
although, as Isaacs [1] has observed, maybe it's more accurate to call it a Frattini
argument, since reasoning like this has so many variations on it.

Reduction 2. If G is a counterexample minimizing |G|, then | N| is a power of a

prime.

Proof of Reduction 2. As already established, if G is a counterexample to S-Z(i),
we must have |N| > 1. Then let p be a prime factor of |V |.
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Sincep | |N|, p1 |G : NJ. This means any power of p dividing |G| will divide |N|.
Therefore, all Sylow p-subgroups of GG are Sylow p-subgroups of IV. Let P be a
Sylow p-subgroup of GG. Then the Sylow counting theorem tells us (again
following Isaacs, using np(X) to denote the number of Sylow p-subgroups of the
finite group X) that

[N| = [Nn(P)|n,(N)
and
|G| = [Ng(P)|ny(G) = [Ng(P)[np(N)

and therefore

Ne(P)| _ |G
Nx () T IV

=[G : N]

Since Ny (P) = N¢(P) N N, this means the number of cosets of N in G
containing elements normalizing P is [G : N|. Therefore every coset of N in G
contains elements normalizing P.

If  Ng(P)| < |G| (thatis, if P is not a normal subgroup of G), then S-Z(i) applies
to Ng(P):
Since |[Ng(P)| = |[Nn(P)|[G : N|, we have

ged ([Nx (P, [G : N]) | ged (|N], |G : N]) =1

and therefore S-Z(i) says there is a complement, H, to N (P) in Ng(P). Then,
since

|H| =[G : N], H is acomplementto NV in G and G is not a counterexample in
this case.

Then we are forced to conclude that, in the minimal counterexample G,
INg(P)| = |G| so Ng(P) = G and P is a normal subgroup of G. Since P is a
subgroup of IV and N is a minimal normal subgroup of G, this forces N = P so
that | V| is a power of p. Reduction 2 is done.
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Now write | V| = p*, where k is a positive integer. In the rest of the proof, G is a
counterexample to S-Z(i) of minimal order, so that Reductions 1and 2 may be
applied.

What does that tell us about N?

If X is a characteristic subgroup of X5 and X5 is a normal subgroup of X3, then
X7 is a normal subgroup of X3. Then, the fact that [NV is a minimal normal
subgroup of GG implies that IN has no proper characteristic subgroups.

Definition. Let g be a prime and let n be a positive integer. A group of order ¢" is
called elementary abelian if it's isomorphic to the Cartesian product of n cyclic
groups of order q.

Theorem. If Y is a nontrivial finite group whose order is a power of a prime, and Y
has no proper characteristic subgroups, then Y is elementary abelian.

Proof of Theorem. Suppose |Y'| = ¢, where q is a prime and m is a positive
integer. We establish the conclusion using two steps:
Step 1. Y is abelian.

Proof of Step 1. Since |Y'| = ¢ where g is prime and m is a positive integer, the
center Z(Y) is nontrivial. Since the center is always a characteristic subgroup,
the condition on Y implies that Z(Y') = Y. In other words, Y is abelian, and Step
1is done.

Step 2. Y is elementary abelian.

Proof of Step 2. Since Y is abelian, the subset of Y consisting of the identity and
all the elements of order q is a subgroup of Y. Its definition makes it clear that it's
also a nontrivial characteristic subgroup of Y. Therefore it must be all of Y, from
which it's easy to see that Y is elementary abelian. Step 2 is done, and the
Theorem is proven.
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The sets on which (G acts, and the correspondence
between them

The heavy lifting of this proof is accomplished by considering the action of G on a

certain pair of sets, each consisting of p[G‘N] elements.

To start defining these G-actions, we need to make some choices. Let
t1,...,g.n] be a set of representatives for the cosets of Nin G. Also, let V be

chosen as a subgroup of NV such that
[N :V]=p.

Now we want to choose, for each i with 1 < ¢ < [G : N|, an x; € N that cycles
around the p right cosets of V' contained in Nt;. First of all, this means Nt;x; =
Nt;, which is equivalent to:

Nt;xz; = Nt;, or, equivalently,
Nt;z;t; 1 = N, or, equivalently,
tizit, 1 € N, or, equivalently,
r, €N

One right coset of V' that is contained in Nt; is V't;. Since ; € N, x; cycles the
right cosets of V' in Nt; as long as we don't have Vt;x; = V't;. In other words,
what we want is:

Vitx; # Vi;, or, equivalently,
Vitix;t; 1 =+ V, or, equivalently,
tia:iti_l ¢V, or, equivalently,

x; g ti_1Vti
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So choosing z; € N \ tl-_1Vti is both necessary and sufficient to enable x; to act
as desired. For each i with 1 < 4 < [G : N], now fix a choice of ; € N \ ti_1Vti

One of the sets on which (G acts is the set of choices of a right coset of V' within
each coset of V. An element of this looks like {Vt;u; C Nt;}1<i<|c:n], Where

u; € N for all ¢ with

1 <i<[G: NJ.g € G acts on this set by right-multiplication; i.e., by sending
{Vtiu; C Nti}1<i<jan to

{Vtiuig C Ntigh<i<ie:n) = {Vtig(g  uig) C Ntigh<i<jc:n)-

The other set on which G acts is the set of functions f : G/N — Z/(p). This set
can be naturally regarded as an affine space over Z/(p).

We define a bijection between these sets by identifying the function f : G/N —
7./ (p) with the set of right coset choices {Vti:clf(i) C Nt;}i<i<g:n)- This is how
the action of (G is carried over from the former set to the latter, and how the affine
space structure is carried over from the latter to the former. This enables us to use
these identifications to think of GG as acting on a single set, which has the
structure of a Z/(p)-affine space on it. This set will be denoted ¥, and called the
space of coset functions, short for “functions from the cosets of N in G to Z/(p)

n

Since we have these GG-actions set up, we wish to prove a few basic facts about
them: G acts faithfully (on either set, since these actions are equivalent), G acts
by affine transformations, and IV acts by translations. Then it will be possible to
assemble these into a proof of S-Z(i).

(G acts faithfully

To say that g preserves the choice of Vt;u; within Nt; is to say that g €
u;lti*thiui. To say that is true over all ¢ with 1 < ¢ < [G : N] is to say that
g c ﬂ ui_lti_thiui

1<i<[G:N]
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Since tl-_1Vti C N, u; € N, and N is abelian, ui_lthtz-uz- = ti_thZ-. Since the
t; form a set of coset representatives for N in G, and N normalizes ti_thZ-,
ﬂlgig[G:N] ti_1th- is the intersection of all G-conjugates of V. In other words, it's
the core of V in G. Since N is a minimal normal subgroup of G and [N : V] =

p > 1, the core of V' in G must be trivial so G acts faithfully on V.

In fact, this argument shows also that any nonidentity element of /N acts without
fixed points on W.

(i acts affinely

The next step is to prove that GG acts by affine transformations on ¥. However,
because of fundamental differences in how the underlying geometry works, it's
helpful to divide this proof into cases depending on the value of p: p might be an
odd prime, or p might be 2.

(7 acts affinely when p is an odd prime

First, assume that p is an odd prime. Unless p = 3 and d = 1, the affine group
AGL4(Z/(p))acts with transitivity degree 2 (i.e., doubly transitively, but not
triply transitively) on the p? points of a d-dimensional affine space over Z/(p). (If
p = 3and d = 1, then the fact that AGL;(Z/(3)) = S35 means all permutations
are affine transformations, so the conclusion follows automatically. So, if p = 3,
the reader is free to assume that d > 2, though it isn't strictly necessary.) This
means we can use a ternary relation on coset functions to prove the affineness of
the action of G:

Affineness Lemma, odd prime version. If d is a positive integer, a permutation of a
d-dimensional affine space over Z/(p) is affine if and only if it sends 3-term
arithmetic progressions to 3-term arithmetic progressions.

Proof of Affineness Lemma. Since p > 3, a permutation of affine space is affine if
and only it preserves, forall t € Z/(p), the binary operation combining u and v to

Part (i) of Schur-Zassenhaus



obtaint - u + (1 — t)v.

If a permutation sends 3-term arithmetic progressions to 3-term arithmetic
progressions, then it preserves the binary operation combining u and v to obtain
2v — u, since 2v — wu is the third term of the arithmetic progression beginning
with u and v. Then it must also preserve 3v — 2u = 2(2v — u) — v, and

4v — 3u = 2(3v — 2u) — (2v — u). Continuing in this fashion, we see this
permutation must preserve k - v — (k — 1)u = k - v + (1 — k)u for all positive
integers k. This allows k to be an arbitrary element of Z/(p), so the permutation
must be affine.

If a permutation is affine, then, for any distinct points © and v in the space, it
preserves the binary operation combining u and v to obtain 2v — u, which
completes the 3-term arithmetic progression whose first two terms are u and v.
So then it sends 3-term arithmetic progressions to 3-term arithmetic progressions,
and the Lemma is proven.

(a, b, c) is an ordered triple of functions from G /N to Z/(p) forming an
arithmetic progression if and only if, for all ¢ with 1 < ¢ < [G : N], the ith
coordinates (a(z), b(z), c(7)) form an arithmetic progression in Z/(p). To say that
is to say we have right V -cosets chosen as

Vtzil??(z) C Nt;,
Vtzwg(z) C Nt;,
Vtiacf(l) C Nt;

such that b(7) — a(i) = ¢(i) — b(2). Equivalently, since this arithmetic
progression is obtained by right-multiplying by a fixed element of G, it is more
pertinent to say that

(tix?(i))_ltiw?(i) _ (m?(i))—1w?(i) _ (w?(i))_lmf(i) _ (tiw?(i))_ltiwf(i). Right-

multiplying by g takes these choices of right V -cosets within their respective N -
cosets to
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Vtzwf(z)g C Ntzg,
Vtix?(l)g C Nt;g,
Vtzig c Ntig

To say that these chosen right V' -cosets within the N-coset Nt;g are in
arithmetic progression is to say that

(x?(i)g)*l(x;’(i) ) = (x?(i) )*1(:5;(1.) ), or equivalently,

g—l (:I?a(i) )—1x?(i)

i g = g_l(xi?(i))_le(i)g, or equivalently,

a(t)y—1,_b() _ ¢ b(i)y—1 _c(i)
which we were already assuming. As Nt; varies over all cosets of IV in GG, so
does Nt;g. Therefore the arithmetic progression condition holds in each
coordinate of (a¥, b, ¢?). This means any g € G sends 3-term arithmetic
progressions to 3-term arithmetic progressions and therefore GG acts affinely, as
claimed.

(7 acts affinely when p = 2

Now we assume that p = 2. Unless d = 1 or 2, the affine group AGL4(Z/(2))
acts with transitivity degree 3 (i.e., triply transitively, but not quadruply
transitively) on the 2% points of a d-dimensional affine space over Z/(2). This
means that there is no ternary relation involving coset functions we can use to
prove the affineness of the action of G in this case. (If d = 1, then the fact that
AGL;(Z/(2)) =2 S means the conclusion is automatic, as before. If d = 2, then
the fact that AGL2(Z/(2)) = S, means the conclusion is likewise automatic. So
the reader is free to assume that d > 3, though only d > 2 is strictly necessary.)

Instead, we can use the only quaternary relation preserved by the action of
AGLy(Z/(2)):
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Affineness Lemma, p = 2 version. Let d > 2 be an integer. Then a permutation of
a d-dimensional affine space over Z/(2) is affine if and only if it sends planes to
planes.

Proof of Affineness Lemma. A permutation is affine if and only if it preserves all 1-
sum linear combinations of points in the space. Since Z/(2) = {0, 1}, a
permutation of an affine space over Z/(2) is affine if and only if it preserves all
sums of oddly many points in the space. Any such sum can be built from sums of
3 points: v1 + ve + v3 + v4 + v5 = (V1 + V2 + v3) + v4 + Us,

V1 + Vo + Vg + Vg4 + V5 + Vg + U7 = (v1+v2+v3+v4+v5)+v6+v7,and
so forth. So a permutation is affine if and only if it preserves all sums of 3 points in
the space. That is, a permutation f of the space is affine if and only if, for all u, v,
and w in the space, (u + v + w) = u/ + v/ + w/.

If u, v, and w are distinct, then they cannot be collinear, since each line in the
space consists of just 2 points. But there is a unique plane passing through them,
and the sum of the points on this plane is the zero vector. (And, conversely, any
set of 4 points in the space forms a plane when their sum is the zero vector.) That
means the fourth point on this plane is —(u + v + w) = u + v + w.

But then the affineness condition says that f takes the plane {u, v, w,u + v +
w} to the set

{uf,vf, w!, uf + v/ + wf}. Since the points in this new set also have a sum
equal to the zero vector and they are distinct, they, too, form a plane. Since u, v,
and w are arbitrary distinct points in the space, this proves f preserves all planes
in the space. Conversely, any permutation of the space sending planes to planes,
for this reason, satisfies the affineness condition described above. We are done.

In any coordinate system (as long as the projection maps to individual coordinates
are affine maps, as happens here because the coordinates define the affine
structure) for an affine spaceover Z/(2), u + v+ w + x = 0 if and only if, for
all 7 indexing the set of coordinates, u; + v; + w; + ; = 0. u; + v; + w; + x; =
0, in turn, is equivalent to saying that the values, in Z/(2), assumed by w;, v;, w;,
and x; are all equal, or equal in pairs (e.g., u; = w; = 1 while v; = x; = 0).
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{a, b, c,d} is a set of 4 (different) coset functions forming a plane if and only if,
for all 7 with

1 < i < [G : NJ, the ith coordinates {a(%), b(2), c(¢),d(7)} add up to 0 in Z/(2).
To say that is to say we have right V' -cosets chosen as

Vitz!” c Nt
Vtia??(i) C Nt;,
vtz c Nt
vl c Nt

such that {a(%), b(4), c(i), d(7) } are all equal, or equal in pairs. Right-multiplying
by g preserves equality/distinctness of the right V -coset choices, so it preserves
their being all equal, or being equal in pairs, within INt;, for all 7. Therefore the
coplanarity condition holds in each coordinate of {a?, b9, ¢, d?}. This means any
g € G sends planes to planes, and therefore GG acts affinely, as claimed.

NN acts by translations

It follows from the normality of IV that IV fixes each coset of NV in G. When we
break up each coset of NV into p right cosets of V, then, since N is a p-group, N
either cycles the right cosets of V' around or it fixes all of them.

The choice of x;, as an element of /N, was made so that it does not fix V't;, so N
must cycle around the p right V -cosets in each N-coset. That also means that
every element of IV cycles around these cosets exactly the way some power of x;
does. A power of x;, say =7, sends the right V-coset Vt;zF to Vt;z ™, for all
E € Z/(p). Therefore any element of N acts by translations on the right cosets
of V in Nt;, and, since 7 is arbitrary, IN acts by translations on the whole space of
coset functions.
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Putting all the pieces together

G acts by affine transformations on ¥, and, in this action, the normal subgroup N
acts by translations. For f1, fo € ¥, define f; ~ f5 to mean that there is an
element of N translating f; to f,. Since every nonidentity element of N acts
without fixed points on ¥, every orbit of N on ¥ has size |N|.

Affine structureon ¥/ ~: Let \, u € Z/(p). Suppose u, v, w € ¥. We need to
verify that v’ € W and u ~ ' imply that Au + pv + (1 — A — p)w ~ Au’ +

pv + (1 — X — pw.

So let T be the element of N such that u” = u'. Then it's easy to compute that
applying the translation A7 carries Au + pv + (1 — A — p)w to Au/ + pv +

(1 — XA — p)w . This means the affine space structure present on W is inherited
by U/ ~.

Groups acting on ¥/ ~: (G acts affinely on ¥, and ¥'s affine structure is inherited
by ¥/ ~. So G acts affinely on ¥/ ~. In the action on ¥/ ~, N acts trivially. So
the affine action of G on ¥/ ~ gives us an affine action of G/N on ¥/ ~.

Using the averaging trick: ¥/ ~ is an affine space over Z/(p), and G/N is an
affinely acting group whose order is a nonmultiple of p. This means that it's
possible to average over the action of G/ N to obtain a fixed point for it:
specifically, consider

— 1
h = v,
|G/N]| 2

9eG/N

forv e ¥/ ~.

Back to ¥ and G: Let h € ¥ be an element of the ~-equivalence class h. Then h
has | N'| images under the action of G on coset functions: h = h/ ~ is a fixed
point for the action of G/N, but every nonidentity element of N has no fixed
points in its action on W. This means that, by the Orbit-Stabilizer Theorem, the
stabilizer of h under the action of G is a subgroup of order |G|/|N| = [G : N].
As proven earlier, this subgroup is a complement to N in GG. This proves S-Z(i), so
we are done.
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