Math 601: Advanced Combinatorics I Cumulative Homework C - Due Dec 4

For this homework, all problems must be handed in to receive full credit. The problems are worth a total of 30 points. No collaboration is allowed, and it should be treated as a mini-take-home midterm/review.

Problems

1. (Short answer: 1 point each, 10 total) Compute the following. No explanations or proofs are necessary for this problem.
(a) The matrix tensor product

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)
$$

(b) The number of ballot words of 1's and 2's of length 9 .
(c) The decomposition of the $\mathfrak{s l}_{2}$ representation $V^{(3)} \otimes V^{(5)}$ into irreducibles.
(d) $\operatorname{dim}\left(V^{(2,1,0)}\right)$, where $V^{(2,1,0)}$ is the irreducible representation of $\mathfrak{s l}_{3}$ with highest weight $(2,1,0)$ (modulo $(1,1,1)$). That is, as a tableau crystal, the highest weight element has two 1 's and one 2.
(e) The number of times the irreducible representation $V^{(2,1,0)}$ of $\mathfrak{s l}_{3}$ appears in the tensor product $V^{(1)} \otimes V^{(1)} \otimes V^{(1)}$.
(f) The number of times $V^{(3,2,1)}$ appears in the tensor product $V^{(2,1)} \otimes V^{(2,1)}$ of $\mathfrak{s l}_{3}$ representations.
(g) $F_{2}(12113323211231)$ where F_{2} is the type A crystal lowering operator for the simple root α_{2}.
(h) The size of the Weyl group of type B_{6}.
(i) $\operatorname{dim}\left(V_{(3,2,1)}\right)$, where $V_{(3,2,1)}$ is the irreducible representation of S_{6} corresponding to the partition $(3,2,1)$ under Schur-Weyl duality.
(j) The number of elements in the conjugacy class of cycle type $(3,2,2,2,1)$ in S_{10}.
2. (5 points) Use the ε method to show that the Lie algebra of $\mathrm{SL}_{n}(\mathbb{C})$, the group of matrices of determinant 1 , is equal to $\mathfrak{s l}_{n}(\mathbb{C})$, the Lie algebra of matrices with trace 0 .
3. (5 points) Show that the longest word $s_{1} s_{2} s_{1}$ in S_{3}, when applied to $\mathfrak{s l}_{3}$ crystals, gives the "up-down symmetry" of the crystal diagrams. In other words, show that the highest weight element gets sent to the lowest weight, and if an element x can be obtained from the highest weight by a sequence of f_{i} operators, then its image under $s_{1} s_{2} s_{1}$ can be obtained from the lowest weight by the corresponding sequence of e_{i} operators.
4. (5 points) Let R denote the regular representation of S_{3} acting on the vector space of formal linear combinations of elements of S_{3}, where the action is by left multiplication. Compute the character χ_{R} by computing the trace of the action on each conjugacy class. Write the Frobenius character Frob $\left(\chi_{R}\right)$ in the power sum basis, and then use Sage (or a computation by hand if you're brave) to convert it to the Schur basis. What does this say about the decomposition of R into irreducible S_{3} representations?
5. (5 points) Suppose V is a representation of S_{4} whose Frobenius image Frob $\left(\chi_{V}\right)$ is $s_{(2,2)}+3 s_{(3,1)}$. Use Sage to convert this symmetric function to the power sum basis. From this expansion, deduce each value of the character $\chi_{V}(\mu)$ for every conjugacy class μ of S_{4}.

