Math 601: Advanced Combinatorics I
 Cumulative Homework A - Due Sep. 25

For this homework, all problems must be handed in to receive full credit. The problems are worth a total of 30 points. No collaboration is allowed, and it should be treated as a mini-take-home midterm/review.

Problems

1. (2 points) Consider the dihedral group D_{4} (the symmetry group of a square, including reflections and rotations) acting on the plane by the corresponding reflection and rotation matrices. Show that this representation of D_{4} is an irreducible 2-dimensional representation over both \mathbb{R} and \mathbb{C}.
2. (7 points) Consider the action of the dihedral group D_{4} on the vertices of a square, and assign each element of D_{4} the corresponding 4×4 permutation matrix. Find the decomposition of this representation into irreducibles.
3. (2 points) Show that tensor product of vector spaces is symmetric:

$$
V \otimes W \cong W \otimes V
$$

4. (3 points) Let $V_{0}=\mathbb{C}$ be the trivial representation of the group G, in which every element of G acts as the identity (of size 1). Show that, for any representation W of G, we have $V_{0} \otimes W \cong W$.
5. (3 points) Show that tensor product of vector spaces distributes over direct sum:

$$
V \otimes(W \oplus U) \cong(V \otimes W) \oplus(V \otimes U)
$$

(You do not need to prove right distributivity as well.)
6. (2 points) Use the ϵ method to find the Lie algebra associated to the Lie group B_{n} of upper triangular matrices in GL_{n}.
7. (a) (5 points) Show that the total number of ballot sequences of 1 's and 2 's of length $2 n$ is $\binom{2 n}{n}$, and that the number of ballot sequences of 1's and 2's of length $2 n+1$ is $\binom{2 n+1}{n+1}$.
(b) (2 points) If V_{1} is the irreducible representation of $\mathfrak{s l}_{2}(\mathbb{C})$ having highest weight 1 , what does this imply about the decompositions of $V_{1}^{\otimes 2 n}$ and $V_{1}^{\otimes 2 n+1}$ into irreducibles?
8. (2 points) Let V_{i} be the irreducible representation of $\mathfrak{s l}_{2}(\mathbb{C})$ with highest weight i. Compute the decomposition of $V_{3} \otimes V_{5}$ into irreducibles.
9. (2 points) Starting with the ballot word 12211122121111 , draw the corresponding $\mathfrak{s l}_{2}$ chain by applying the lowering operator F until it is no longer possible.

