Math 567: Abstract Algebra I Homework 8

10 points total. Due Friday, Mar 25 by 1:10 pm in class.

Problems

- 1. (1 point) The textbook claims in section 15.1 that any subfield of \mathbb{C} contains \mathbb{Q} . Prove this.
- 2. (2 points) The fact that $\mathbb{Q}[\sqrt{2}] = \mathbb{Q}(\sqrt{2})$ means that one can "rationalize the denominator" of any fraction of the form $\frac{a+b\sqrt{2}}{c+d\sqrt{2}}$. Indeed, we know how to do this from previous algebra classes; simply multiply the top and bottom by $c d\sqrt{2}$. Now, we also know that $\mathbb{Q}[\sqrt[3]{2}] = \mathbb{Q}(\sqrt[3]{2})$. How would you go about rationalizing denominators in this field?
- 3. (1 point) Artin Ch 15 problem 1.1.
- 4. (2 points each) Artin Ch 15 problems 2.1, 3.1, 3.3

Bonus Problem

(+1 point:) Artin Ch 15 problem 2.2.