Math 567: Abstract Algebra I
 Homework 5

10 points total. Due Friday, Feb 25 by 11:10 am in class.

Problems

1. (3 points) Consider the quotient ring $R_{2}=\mathbb{C}[x, y] /(x+y, x y)$. Notice that S_{2} acts on $\mathbb{C}[x, y]$ by the transposition (12) switching x with y; for instance, if we apply (12) to the polynomial $f(x, y)=3 x^{2}+2 y$, we would get $3 y^{2}+2 x$.
Since the ideal we are quotienting by is invariant under this S_{2} action, it is a $\mathbb{C} S_{2}$-submodule, and therefore S_{2} also acts on the quotient. Show that this quotient module R_{2} decomposes as a direct sum of two irreducible S_{2}-modules (or equivalently as representations).
2. (2 points each) Artin chapter 10 problems 2.1, 2.3(a), 2.3(b). (Note, in 2.3 the group G stands for S_{3}.)

Bonus Problem

(+1 point:) Consider the quotient ring $R_{3}=\mathbb{C}[x, y, z] /(x+y+z, x y+y z+z x, x y z)$ as an S_{3}-module by the permutation action that permutes the three variables x, y, z. Decompose this representation into irreducibles.

