Math 566: Abstract Algebra I
 Homework 7

10 points total. Due Friday, October 8 by 11:10 am in class.

Problems

1. (1 point) Prove that, for any vector spaces U, V, W over a field \mathbb{F}, we have

$$
(U \oplus V) \otimes W \cong(U \otimes W) \oplus(V \otimes W) .
$$

Show also that \oplus and \otimes are commutative operations on vector spaces (up to isomorphism).
2. (2 points) It is known that all of the irreducible representations of an abelian group are one-dimensional. Find all of the irreducible representations of the cyclic group C_{5}.
3. (2 points) Compute the dimension of the space $\mathbb{R}[x, y, z]^{(d)}$ of degree-d homogeneous polynomials in three variables x, y, z. Express your answer in terms of d.
4. (1 point each) Chapter 4 exercises 1.2, 1.3, 2.1, 3.1, Chapter 5 exercise 1.1.

Recommended practice exercises

(DO NOT hand these in - these are just extra problems I recommend you look at if you'd like more practice.)

Chapter 4 exercises 1.1, 1.5, 2.3, 3.3.

Bonus

+1 onto your total homework score for correctly answering the following question:
Decompose the permutation representation of S_{3} into a direct sum of irreducible representations.

