# Math 566: Abstract Algebra I <br> Homework 14 

10 points total. Due Friday, Dec 10 by 11:10 am in class.

## Problems

1. (1 point) Do "division with remainder" of $5+6 i$ by $1+i$ in the Euclidean domain $\mathbb{Z}[i]$ in two different ways. That is, express $5+6 i$ as $q(1+i)+r$ for two different pairs of complex numbers $q$, $r$ for which $|r|^{2}<|1+i|^{2}$.
2. (2 points) Chapter 12 exercise 2.10. (Hint: First prove it is a PID. If you have already solved the Bonus on Homework 12 correctly then you may use your previous work; otherwise, try to do that problem first.)
3. (1 point each) Chapter 12 exercises 2.6(a), 2.6(b), 2.7, 3.2, 4.1(a), 4.1(b), 4.4

## Recommended practice exercises

(DO NOT hand these in - these are just extra problems I recommend you look at if you'd like more practice.)

Chapter 12 exercises 2.8, 4.10.

## Bonus

(+1 point): Let $G$ be a group and $\mathbb{F}$ any field. The group ring $\mathbb{F} G$ is the set of all formal linear combinations of elements of $G$ with coefficients in $\mathbb{F}$. For instance, an element of $\mathbb{C} S_{3}$ might look like:

$$
0.2 \cdot(\mathbf{1 2})-(3+i) \cdot(\mathbf{1 3 2})
$$

where the permutations are shown in boldface to distinguish them from the complex number coefficients.

We can put a ring structure on the group ring by the usual addition on formal linear combinations, and multiplication $*$ given by the left and right distributive laws along with the rule

$$
(a \cdot g) *(b \cdot h)=a b \cdot(g h)
$$

where $a, b \in \mathbb{F}$ and $g, h \in G$.
Show that the group ring is in general a (possibly noncommutative) ring with identity, and show that it is a commutative ring if and only if $G$ is abelian.

