Math 566: Abstract Algebra I
 Homework 13

10 points total. Due Friday, Dec 3 by 11:10 am in class. (In TWO WEEKS after this homework was posted. Happy Thanksgiving!)

Problems

1. (5 points - 1 point per part) Let R be a ring. For ideals $I, J \subset R$, define $I+J=\{a+b: a \in$ $I, b \in J\}$, and define $I \cdot J=\{a b: a \in I, b \in J\}$.
(a) Prove that $I+J$ is an ideal of R as well, and that it is the smallest ideal containing both I and J.
(b) Prove that $I \cdot J$ is an ideal of R as well.
(c) Suppose I is generated by f_{1}, \ldots, f_{r} and J is generated by g_{1}, \ldots, g_{s}. Show that $I+J$ is generated by $f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s}$.
(d) With notation as in the previuos part, show that $I \cdot J$ is generated by all products of the form $f_{i} g_{j}$ for $i=1, \ldots, r$ and $j=1, \ldots, s$.
(e) Show that the intersection $I \cap J$ is also an ideal.
2. (2 points) In the ring $\mathbb{C}[x, y]$, let I be the ideal $(x y, x+y-1)$, and let J be the intersection of the ideals $(x-1, y)$ and $(x, y-1)$. First prove algebraically that $I=J$, and then prove it geometrically by comparing $V(I)$ and $V(J)$ (where you are allowed to assume I and J are radical ideals.)
3. (1 point) Find all prime ideals in $\mathbb{C}[x] /\left(x^{2}\right)$. Conclude that while $\mathbb{C}[x] /\left(x^{2}\right)$ has the same number of maximal ideals as $\mathbb{C}[x] /(x)$, it does not have the same number of prime ideals. This is reflected in the fact that if the definition of the varieties $V(x)$ and $V\left(x^{2}\right)$ are defined using Spec rather than Spec - m, the two varieties are different. The variety $V\left(x^{2}\right)$ is sometimes called a "fuzzy point" or "fat point" whereas $V(x)$ is called a "reduced point".
4. (2 points) Compute the radical of the ideal $\left(x^{4}-2 x^{2}+1, x^{4}+2 x^{3}+x^{2}\right)$ in $\mathbb{C}[x]$. (Hint: First express this ideal as a principal ideal.)

Recommended practice exercises

(DO NOT hand these in - these are just extra problems I recommend you look at if you'd like more practice.)

Chapter 11 exercises 9.1, 9.3, 9.7, 9.8.

Bonus

(+1 point): Considering the quotient ring $\mathbb{C}[x, y] /\left(x+y, x^{2}+y^{2}\right)$ as a vector space over \mathbb{C}, compute its dimension. Do the same for $\mathbb{C}[x, y, z] /\left(x+y+z, x^{2}+y^{2}+z^{2}, x^{3}+y^{3}+z^{3}\right)$.

