Math 566: Abstract Algebra I
 Homework 11

10 points total. Due Friday, Nov 12 by 11:10 am in class.

Problems

1. (1 point) Let p be a prime. Using the multiplicative group of the field $\mathbb{Z} / p \mathbb{Z}$, prove that for any integer a, we have $a^{p} \equiv a(\bmod p)$. (This is called 'Fermat's Little Theorem'.)
2. (1 point) For which pairs of integers n and m is there a ring homomorphism from $\mathbb{Z} / n \mathbb{Z}$ to $\mathbb{Z} / m \mathbb{Z}$?
3. (3 points) Let R be any ring. Prove that the ring of formal power series $R[[x]]$ defined in class is indeed a ring.
4. (5 points - one point per part) Chapter 11 exercise 3.3

Recommended practice exercises

(DO NOT hand these in - these are just extra problems I recommend you look at if you'd like more practice.)

Chapter 11 exercises 1.8, 2.1, 3.6, 3.7, 3.10.

Bonus

(+1 point): (Constructing the outer automorphism of S_{6}). Recall on previous bonus problems we showed that only S_{6} can have an outer automorphism. Show that there is a homomorphism $f: S_{6} \rightarrow S_{6}$ defined on the generators s_{1}, \ldots, s_{5} (where $s_{i}=(i i+1)$ as in the previous homework) as follows:

$$
\begin{aligned}
f\left(s_{1}\right) & =(12)(34)(56), \\
f\left(s_{2}\right) & =(13)(25)(46), \\
f\left(s_{3}\right) & =(15)(26)(34), \\
f\left(s_{4}\right) & =(13)(24)(56), \\
f\left(s_{5}\right) & =(16)(25)(34)
\end{aligned}
$$

by showing that the images $f\left(s_{i}\right)$ satisfy the braid relations and commutation relations that define the symmetric group. Then prove that f is an isomorphism, and conclude that it is an outer automorphism of S_{6}.

