Math 566: Abstract Algebra I Homework 10

10 points total. Due Friday, Nov 5 by 11:10 am in class.

Problems

1. (2 points) Prove that the symmetric group S_{n} is generated by the adjacent transpositions $s_{1}, s_{2}, \ldots, s_{n-1}$ where $s_{i}=(i i+1)$. Show that the adjacent transpositions s_{i}, s_{i+1} satisfy a "braid relation":

$$
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}
$$

Show also that the non-adjacent transpositions, say s_{i} and s_{j} with $j \geq i+2$, commute: $s_{i} s_{j}=s_{j} s_{i}$.
2. (2 points) It is known that the relations in the previous problem are sufficient to define the symmetric group, that is:

$$
S_{n}=\left\langle s_{1}, s_{2}, \ldots, s_{n-1} \mid s_{i}^{2},\left(s_{i} s_{i+1}\right)^{3},\left(s_{i} s_{j}\right)^{2}\right\rangle
$$

where the relations range over all i, j with $|i-j|>1$. A reduced word for an element $w \in S_{n}$ is a word of minimal length in the generators s_{i} that evaluates to w. Find a reduced word for the permutation that, in list notation, is $n, n-1, n-2, \ldots, 1$, and show it is reduced. This is called the longest word as this element has the longest length of a reduced word. What is the length?
3. (1 point) Prove that S_{n} is generated by the transposition (12) along with the cycle ($123 \cdots n$).
4. (2 points) Use the Todd-Coxeter algorithm to show that the groups $\left\langle x, y \mid x^{2}, y^{3}, x y x y\right\rangle$ and $\left\langle x, y \mid x^{2}, y^{2}, x y x y x y\right\rangle$ are both isomorphic to S_{3}.
5. (1 point each) Chapter 7 exercises 9.1, 10.3.

Recommended practice exercises

(DO NOT hand these in - these are just extra problems I recommend you look at if you'd like more practice.)

Chapter 7 exercise 11.3.

Bonus

(+1 point): You can label every integer either "even" or "odd" in such a way that adding two even numbers or two odd numbers gives an even number, and adding an even plus an odd gives an odd number. Can you do the same for the real numbers? In other words, can you label every real number either "E" or "O" such that the sum of any two numbers with the same label is an E number, and any E plus O is O ?

If it is possible, describe all ways of doing so, and explain what this means about the set of group homomorphisms from $(\mathbb{R},+)$ to $(\mathbb{Z} / 2 \mathbb{Z},+)$.

