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Abstract

In this paper we take Richard Stanley’s 2008 paper, Promotion and Evacuation, and go into
detail of the processes and in depth with a few examples. We also state and prove a few results
from the paper.

1 Introduction

Promotion and evacuation are bijections on the set of linear extensions of a finite poset. Evacua-
tion first came from studying the RSK algorithm. Later, M.-P. Shützenberger defined evacuation
without mentioning the RSK algorithm. He then extended the definition to do evacuation on linear
extensions of any finite poset. Evacuation is defined in terms of a smaller operation called promo-
tion. Shützenberger established fundamental properties of promotion and evacuation which we will
explore.

All figures are printed at the back of the document for easy comparison.

1.1 Notation/Definitions

Let us first state a few definitions.

Definition 1.1. A poset is a partial ordering on a set P of a binary relation on P , denoted ≤,
such that ∀s1, s2, s3

• s1 ≤ s1

• If s1 ≤ s2 and s2 ≤ s1 then s1 = s2

• If s1 ≤ s2 and s2 ≤ s3 then s1 ≤ s3.

Example 1.2. Observe the set of the divisors of 30 with the binary relation divides, denoted (30, |).
This is a poset. Another example is the power set of any set with the relation of containment such
as (P (Sn),⊂).

Definition 1.3. A great way to visualize posets is called a Hasse Diagram. It is a graph with
implied upwards orientation where vertices are the elements and two elements are connected by an
edge if and only if the relation is satisfied between them.

Example 1.4. We can see the Hasse Diagram for (30, |) in Figure 1.

Definition 1.5. Within a poset, s ∈ P covers t ∈ P if t < s and no u ∈ P satisfies t < u < s. We
denote this t⋖ s.
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Example 1.6. Following our previous example, 3⋖ 15 and 5⋖ 15. Note that 30 does not cover 3
as 15 is “in the way”. We can see this easily in Figure 1.

Definition 1.7. A linear extension is a bijection f : P → [p] = {1, 2, . . . , p} such that if s < t in
P , then f(s) < f(t). We denote the set of all linear extensions as L(P ).

We will call the original elements of the poset “elements” and the elements of the linear extension
the “labels” for clarity.

Example 1.8. A linear extension will respect all of the covering relationships from before. Let our
poset be (30, |). An example of a linear extension of (30, |) is f(1) = 1, f(2) = 5, f(3) = 3, f(4) =
2, f(5) = 6, f(6) = 10, f(7) = 15, f(8) = 30. We can relabel the Hasse Diagram in Figure 1 with
its linear extension as seen in Figure 2.

2 Defining Promotion and Evacuation

2.1 Promotion

Define a bijection ∂ : L(P ) → L(P ) as such: Remove the label 1 say at position t1. Take the lowest
label covering t1 and “slide” that label down to t1 (to make it no longer empty). Continue filling
the newly empty label until we have an empty space not covered by any elements. Label the last
empty space p+ 1. Subtract 1 from each label to return to 1, . . . p instead of 2, . . . (p+ 1). We call
this promotion. After applying promotion to a linear extension, we denote it f∂.

Example 2.1. Observe Figure 3, promotion on a linear extension of the divisors of 30.

We naturally define dual promotion by removing the largest label then slide the largest label
covered by it to that position. This is also the inverse of promotion. We denote dual promotion
∂∗ = ∂−1.

2.2 Evacuation

Define a bijection ϵ : L(P ) → L(P ) by computing f∂, “freezing” label p into place, and then
applying ∂ to what remains and again freeze the label, p− 1 this time. Continue until every label
has been frozen. This entire process is called evacuation. After applying evacuation to a linear
extension, denote it fϵ.

Example 2.2. Observe Figure 4.

We define dual evacuation as f∗ ∈ L(P ∗) by f∗(t) = p+1− f(t). Then fϵ∗ = (f∗ϵ)∗. We do
not go deeply into this in this paper.

NOTE: We may use promotion and evacuation on standard Young tableaux since every SYT
of shape λ can be identified with a Pλ. This is how the ideas of promotion and evacuation started.

2.3 Properties of Promotion and Evacuation

Theorem 2.3. Let P be a p-element poset. Then the operations of evacuation (ϵ), dual evacuation,
(ϵ∗), and promotion (∂) have the following properties:

(a) ϵ2 = 1 i.e. evacuation is an involution

(b) ∂p = ϵϵ∗

(c) ∂ϵ = ϵ∂−1
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3 Algebraic Interpretation

We now present a proof of Theorem 2.3 due to Haiman (and further Malvenuto and Reutenauer)
that views linear extensions as words rather than functions and describes ∂, ϵ as actions on those
words. We start abstractly by defining a group with generators.

Let G be the group with generators τ1, . . . , τp−1 and relations

τ2i = 1 for 1 ≤ i ≤ p− 1

τiτj = τjτi if |i− j| > 1.

Define the following elements of G:

δ = τ1τ2 . . . τp−1

γ = γp = τ1τ2 . . . τp−1 · τ1τ2 . . . τp−2 · · · · · τ1τ2 · τ1
γ∗ = τp−1τp−2 . . . τ1 · τp−1τp−2 . . . τ2 · · · · · τp−1τp−2 · τp−1.

Lemma 3.1. In the group G, we have the following identities:

(a) γ2 = (γ∗)2 = 1

(b) δp = γγ∗

(c) δγ = γδ−1

Proof. We will prove (a) by induction on p. The proofs for (b) and (c) are similar. For p = 2,

γ22 = τ21 by definition of γp

= 1 by generator relations.

Now assume γ2p−1 = 1. Then,

γ2p = τ1τ2 . . . τp−1 · τ1 . . . τp−2 · . . . τ4 · τ1τ2τ3 · τ1τ2 · τ1 · τ1τ2τ3τ4 . . . τp−1 · τ1 . . . τp−2 · · · · · τ1τ2τ3 · τ1τ2 · τ1
= τ1τ2 . . . τp−1 · τ1 . . . τp−2 · . . . τ4 · τ1τ2τ3 · τ1 · τ3τ4 . . . τp−1 · τ1 . . . τp−2 · · · · · τ1τ2τ3 · τ1τ2 · τ1
= τ1τ2 . . . τp−1 · τ1 . . . τp−2 · . . . τ4 · τ1τ2 · τ1τ3 · τ3τ4 . . . τp−1 · τ1 . . . τp−2 · · · · · τ1τ2τ3 · τ1τ2 · τ1
= τ1τ2 . . . τp−1 · τ1 . . . τp−2 · . . . τ4 · τ1τ2 · τ1 · τ4 . . . τp−1 · τ1 . . . τp−2 · · · · · τ1τ2τ3 · τ1τ2 · τ1

Note that all the terms inbetween the τ4’s have an index difference greater than 1 with τ4 so
we may move the two τ4’s next to each other to cancel them. This statement is then true for the
τi+1’s for i ≥ 4 since

. . . τi+1τ1 . . . τi−1τi(...)τiτi+1 . . .

The (...) in the middle will not cancel but be a part of γ2p−1. We continue in this way until i = p−1

where we reach γ2p−1 which by our induction hypothesis is 1.
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For clarity, observe this smaller computation assuming we know γ24 = 1. We drop the τ and
write the indeces only.

γ25 = 1234 · 123 · 12 · 1 · 1234 · 123 · 12 · 1
= 1234 · 123 · 1 · 34 · 123 · 12 · 1
= 1234 · 12 · 1 · 4 · 123 · 12 · 1
= 123 · 12 · 1 · 123 · 12 · 1
= γ24

= 1.

We can definitely see a connection between ∂, ϵ and δ, γ respectively and thus a connection
between Theorem 2.3 and Lemma 3.1. Since ϵ is defined in terms of ∂, we need only show the
connection between ∂ and δ to use Lemma 3.1 prove Theorem 2.3.

Proof of Theorem 2.3. Let us view a linear extension f ∈ L(P ) as the word f−1(1), . . . f−1(p). For
1 ≤ i ≤ p− 1, define operators τi : L(P ) → L(P ) by

τi(u1u2 . . . up) =

{
u1u2 . . . up if ui and ui+1 are comparable in P

u1u2 . . . ui+1ui . . . up otherwise

Note that τi is a bijection. Also note that they satisfy the relations of the abstract generators of
our earlier group, G. So now we need to show that

∂ = δ := τ1τ2 . . . τp−1.

We want operating on the linear extension word to have the same result as doing the “sliding” on
the corresponding poset. When f = f−1(1) . . . f−1(p) = u1 . . . up, then fδ is obtained as follows.

STEP 1: Let j > 1 be the least integer such that u1 < uj . Since f is a linear extension,
u2 . . . uj−1 are incomparable with u1. Move u1 between uj−1 and uj .

STEP 2: Let k > j be the least integer such that uj < uk. Move uj so it is between uk−1 and
uk.

STEP 3: Continue in this way until the end of the word is reached.
This process is equivalent to taking a word f and factoring it left to right into maximally long

factors such that the first element in each factor is incomparable with all the other elements in that
factor and then cyclically shifting each factor to the left, placing the first element of each factor at
the end of each factor.

Now let us consider promotion of the same u1u2 . . . up = f−1(1) . . . f−1(p) given as a function
by f(ui) = i. We know the elements u2, . . . , uj−1 are incomparable with u1 and thus will have
their labels reduced by 1 after promotion (they will not be part of the sliding). Then label j or
uj (the least element in the linear extension f greater that u1) will slide to u1 and be reduced to
j − 1. Thus f∂ = u2u3 . . . uj−1u1 . . . . Continuing this, we slide the label k of uk down to uj . Thus
fδ = f∂.

Let us see that f∂ gives the same result as fδ. Figure 3, the promotion of the linear extension
of the divisors of 30, gives an order in which to read the original elements of Figure 1. This results
in

1, 3, 2, 6, 5, 15, 10, 30.

Now take the word of the linear extension and perform our factoring and cyclic shifting:

1, 5, 3, 2, 6, 10, 15, 30 = (1)(5, 3, 2, 6)(10, 15)(30) → (1)(3, 2, 6, 5)(15, 10)(30) = 1, 3, 2, 6, 5, 15, 10, 30.
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4 Conclusion

There are more results regarding promotion and evacuation of linear extensions. One may find
these in Stanley’s original paper. Stanley also goes into self-evacuation, linear extensions such that
fϵ = f , and P-domino tableaux.
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5 Figures
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Figure 1: Hasse Diagram for the Divisors of 30
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Figure 2: Hasse Diagram for the Linear Extension
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Figure 3: Promotion of Figure 2
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Figure 4: Evacuation of Figure 2
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