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Abstract

This work explores the concept of moduli spaces of stable curves with marked points, which
are sets of parameters describing families of objects. These spaces can be used to solve problems
in enumerative geometry, such as determining the number of curves passing through a given
number of points. The common principle underlying these solutions is the association of the
objects with a moduli space, which provides a different perspective on the problem. We illustrate
this connection with examples.
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1 Introduction

Let us begin with a simple question:

Which are the quadratic curves which pass through 4 points in R2 and no three of them
are collinear?

This question might be a bit tough to tackle right now, but let us simplify. How about if the points
are (1, 1), (1,−1), (−1,−1) and (−1, 1)? At once the following idea should pop-in in our heads: a
circle! The circle which passes through these points is described by the equation x2+y2 = 2 as seen
in Figure 1. Ideally we would like to stretch and shrink the circle in order to make it an ellipse. We
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Figure 1: One of the quadratic curves passing through our points: x2 + y2 = 2.
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know ellipses have equations of the form x2/a2 + y2/b2 = 1, but to begin from our circle equation
we will instead add coefficients to the equation

Ax2 + By2 = 2.

These coefficients are determined by the points on the curve, we may derive the relation by plugging
in a point into the equation:

A(1)2 + B(1)2 = 2⇒ B = 2−A⇒ tx2 + (2− t)y2 = 2

where we take t = A to get the last equation. We annotate the curves we obtain given different
values of t:

• (t = 1): A circle.

• (1 < t < 2): An ellipse.

• (t = 2): The pair of lines x2 = 1.

• (t > 2): A hyperbola.

However we are left with one curve which passes through the points in question. To find it we will
assume t is non-zero. From our parametric equation we obtain

tx2 + (2− t)y2 = 2⇒ x2 + o(t) + y2 =
2

t
−−−→
t→∞

x2 = y2

which is the pair of lines y = ±x. Observe that this behavior is independent of the sign of the
infinity we are going to. In essence what we have seen is that all the quadratic curves passing
through our set of points can be parametrized by R ∪ {∞}. Formally:

Proposition 1. The moduli space M0,4 can be identified with P1
R.

Intuitively the moduli space is a set of parameters. When the points vary continuously, the
objects they parametrize deform continuously as well. What we have done here is not a proof of
the previous proposition but it may serve as evidence that it is true.

To study this space and other spaces which may arise in this fashion, we may ask a question like
how many such curves can we find? In order to do this, we will address this problem by connecting
it with graphs.

2 Connection with trees

As a first approach we could consider an incidence graph where our vertices are the marked points
and they are connected if they are in the same component of our curve. However that might
produce undesirable results as it could lead to disconnected graphs.

Definition 1. For a point in M0,X (which represents a curve), we define the dual tree to that
curve as:

• V = X ∪ I where I is the set of irreducible components in our curve. The set X attaches
labels to our vertices while the curves are unlabeled.

• Vertices in X are not connected between themselves, but u ∈ X is adjacent to v ∈ I if u lies
in the irreducible component associated to v.

For u, v ∈ I, uv is an edge if the components meet at a nodal singularity.
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Figure 2: The projective real line as the moduli space M0,4.

Even though we have defined the dual tree to be a tree, it may not be totally clear why this is
the case:

Why should this process generate a tree? Why not a disconnected graph or a cycle?

This follows from the definition because we are talking about genus 0 curves. When we admit
holes, what we are allowing in the graph is cycles.

Example 1. Let us consider the case of M0,4, our labeled vertices will be

a = (1, 1), b = (−1, 1), c = (−1,−1), 1 = (−1,−1).

We have different types of trees:

1. For ellipses and circles, the vertices are a, b, c, 1 or ·, and the edges are of the form x· for
x ∈ X. This gives us a K1,4 graph.

2. Hyperbolas have a unique component. In the projective plane, the components are connected
at the point corresponding to the slope of the asymptotes at infinity, so the dual trees of the
hyperbolas are also K1,4 graphs.

3. For t = 0, there are two unlabeled vertices. a and b are connected to one vertex, while c and 1
are connected to the other. At infinity, there is a nodal singularity at the point corresponding
to the slope of the lines, which means they connect.
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A similar analysis can be done for t = 2 and t→∞, and the resulting graph is two copies of
P3 connected by their middle vertices.

The corresponding trees are shown in the following figure:
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Figure 3: Trees associated to: (1) circles, ellipses and hyperbolas; (2) the curve y2 = 1; (3) the
curve x2 = 1; and (4) the curve x2 = y2.

Remark 1. Look at the degrees of our vertices, there are no vertices of degree 2. If we remove the
labels, all the trees besides (1) are isomorphic.

Also notice that when talking about the ellipses and the circle, we did not assign a particular
value of t to each of the curves. We just said an ellipse or also an hyperbola, which means that the
whole family of those curves is associated to the particular tree we obtained.

Definition 2. For a tree T we have that:

1. T is trivalent if all vertices of T have degree 1 or 3 and at least one vertex has degree 3.

2. T is at least trivalent if no vertex of T has degree 2 and at least one vertex has degree at
least 3.

Remark 2. In our graphs, observe that the trees associated to families of curves like ellipses and
hyperbolas, correspond to at least trivalent trees.

While for the particular cases t = 0, t = 2 and t → ∞ we get exactly trivalent trees. This is
no coincidence! The fact that at least trivalent trees correspond to a large number of curves and
that the trivalent ones only to a select few.

Definition 3. The boundary stratum corresponding to a tree T is the set of curves whose dual
tree is T .

Example 2. In our example, the boundary stratum of K1,4 is

]−∞, 0[ ∪ ]0, 2[ ∪ ]2,∞[

where we identify ∞ with −∞.
The remaining points { 0 }, { 2 } and {∞} are zero-dimensional and these are the boundary

points which correspond to the trivalent trees.

The observation that the boundary points correspond to the trivalent trees is key, because
knowing this allows us to simplify the problem of counting the boundary points to counting certain
trivalent trees. In general this result is true:
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Proposition 2. The boundary points ofM0,X correspond to trivalent trees whose leaf set is labeled
with X. If X = { a, b, c, 1, 2, . . . , n }, then the number of boundary points of M0,X is (2n + 1)!!.

To count the number of leaf-labeled trivalent trees Ln on n+3 leaves, we begin with the following
small values:

• When n = 0, there is only one tree, K1,3, with a unique labeling of the leaves. So L0 = 1,
which coincides with (2(0) + 1)!! = 1.

• When n = 1, we have two copies of P3 joined by their middle vertices. There are 4! ways to
label the four leaves without constraints. Accounting for symmetries, we have L1 = 4!/23 = 3,
as pictured in the figure above.

• For the next case we are supposed to find 15 trees. Counting by hand or considering symme-
tries is not the way to go. We’ve got to be more creative than that. A question arises:

Is there a way to obtain the next trees from the old trees?

In essence, we wish to add a new leaf to our graph. Intuitive ways in which we could proceed
are:

– Adding the leaf to a leaf vertex. But this actually doesn’t work. We add one leaf but
we lose one and even worse, now one vertex has degree 2. This means our tree is no
longer trivalent.

– Adding the leaf to a non-leaf vertex. Indeed we now have a new leaf, but the vertex we
added to now has degree 4. So our tree is no longer trivalent.

Apparently our original ideas won’t work. So with a boost of creativity we will instead pop
the leaf out of an edge:
















6 a b a la 2a 6 2

C 1 C 1 C 1 C y a

a

T

T

Figure 4: Popping a leaf out of an edge to form a new trivalent tree.

Note that adding a leaf to an edge creates a new vertex with degree 3 and adds a new leaf to
the tree. There is no constraint on the number of vertices in a trivalent tree, so we can add
as many new leaves as we want.

Back to our three trees, each one has 5 edges which means there are 5 possible ways to add
a labeled leaf. This gives us a total of 15 ways to form a 5-leaved labeled trivalent tree from
the previous ones. Thus, L2 = 15, which is equal to (2·2 + 1)!! = 1·3·5.

• For n = 3, we count leaf-labeled trivalent trees with 6 leaves. Each of our 15 previous trees
has 7 edges to which we can adjoin a new labeled leaf. For each of the trees, these are different
possibilities. So in total we have 7·L2 = 105 new trees.

We formalize this strategy using a couple of lemmas:
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Lemma 1. The number of edges En on a trivalent tree with n + 3 leaves satisfies the recursion:

En = En−1 + 2, E0 = 3

which means that En = 2n + 3.

Proof. We will proceed using induction. The base cases have been discussed earlier, so now we will
use an (n− 1) + 3 = n + 2 leaved trivalent tree as a starting point.

To add a new leaf while preserving the trivalent property, we add a new vertex to an existing
edge and attach the leaf to that vertex. This process creates two new edges:

• One edge which was split in two by the addition of the new vertex in the middle.

• Another one created by attaching the leaf to the new vertex.

This means that the number of edges increased by two and the degree of the new vertex is 3,
so En = En−1 + 2 as desired. The recursion can be solved using the initial condition to obtain
En = (2n + 3) for all n.

Lemma 2. The number of leaf-labeled trivalent trees with n + 3 leaves, Ln, satisfies the recursion

Ln = En−1Ln−1, L0 = 1.

Proof. The base cases have been proven in the previous discussion. So for an (n + 2)-leaved tree,
we have a, b, c, 1, 2, . . . , n− 1 as the labels of our leaves.

Adding the leaf labeled n can be done in En−1 ways because we may attach it to any of the
existing edges. Each of these new trees has a unique set of labels, and there are Ln−1 such trees.
Therefore, there are En−1Ln−1 new leaf-labeled trivalent trees.

Solving the recursion we have Ln = (2n + 1)Ln−1 which means that

Ln = (2n + 1)(2n− 1)(2n− 3) · · · = (2n + 1)!!.

With these results in hand the proposition is immediately true. The fact the boundary points
correspond to the trivalent trees is a consequence of the fact that automorphisms of P1 are deter-
mined by 3 points.

3 Understanding the moduli space

In the previous sections, we have explored the concept of trivalent trees and their relationship to
curves and the moduli space M0,4. But what exactly is this space? Our aim now is to provide a
concrete explanation of M0,n, and discuss its significance in our understanding of trivalent trees
and beyond.

Definition 4. The moduli space M0,n parametrizes ordered n-tuples of distinct points in P1 up
to projective equivalence. Two arrays of points (p1, . . . , pn), (q1, . . . , qn) are equivalent when

∃T ∈ PGL2 [(q1, . . . , qn) = (Tp1, . . . , Tpn)] .

In our case M0,4 can be seen to be the set of equivalence classes of arrays (p1, . . . , p4) with
pi ∈ P1.
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Remark 3. Drawing an analogy with matrices, where the row-reduced echelon form serves as a
canonical representative of the equivalence class of row-equivalent matrices, we seek a similar notion
of canonical representation for the moduli space M0,4.

Proposition 3. Any projective transformation T ∈ PGL2 is determined by where it maps 0, 1 and
∞.

The proof of this fact is a basic computation in linear algebra.

Remark 4. Before we proceed with the proof, it is important to note that the projective transfor-
mation we will derive maps 0, 1, and ∞ to three distinct points p1, p2, and p3, respectively. This
transformation’s inverse will serve as the canonical representative of the equivalence class, as it
maps p1, p2, and p3 back to 0, 1, and ∞, respectively.

Proof. Assigning coordinates we have

0 = [0 : 1], 1 = [1 : 1], ∞ = [1 : 0].

Now suppose T =

(
t11 t12
t21 t22

)
is a projective transformation and p, q, r are points in P1 such that

T [1 : 0] = p = [p1 : p2]

T [0 : 1] = q = [q1 : q2]

T [1 : 1] = r = [r1 : r2]

From the first two equations we have that(
t11
t21

)
= m1

(
p1
p2

)
, and

(
t12
t22

)
= m2

(
q1
q2

)
for some m1,m2 6= 0

which means that the columns of T are proportional to p and q and to determine T we are only
required to determine m1 and m2. Replacing these entries into the matrix and considering the last
equation we have(

m1p1 m2q1
m1p2 m2q2

)(
1
1

)
= m3

(
r1
r2

)
⇒

{
m1p1 + m2q1 = m3r1,

m1p2 + m2q2 = m3r2,
⇒
(
p1 q1
p2 q2

)(
m1

m2

)
=

(
m3r1
m3r2

)
.

The last matrix’s columns are linearly independent because they are the image of two l.i. vectors
under a linear transformation. This means that we may recover (m1,m2) by inverting that matrix:(

m1

m2

)
= m3

(
p1 q1
p2 q2

)−1(
r1
r2

)
.

This information determines T up to a scalar multiple m3 which means that projectively, we have
determined T .

With the proposition in hand we may map the first 3 points of our array to the special points
0, 1,∞, and let the last one map to an arbitrary but fixed t:

(Tp1, . . . , Tp4) = (0, 1,∞, t), t ∈ P1.

At the level of equivalence classes this means:

[(P1, (p1, . . . , p4))] = [(P1, (0, 1,∞, t))]

and so every equivalence class of points is determined by a unique t ∈ P1.
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Figure 5: A projective transformation T sending the tuple (p1, . . . , p4) to its corresponding repre-
sentative in the moduli space M0,4.

Remark 5. Recall that in the definition of the moduli space, we stated that the points (p1, . . . , p4)
should be distinct! So this means that t is not in the whole of P1, t can’t be 0, 1 nor ∞.

The previous discussion proves the following result.

Proposition 4. The moduli space M0,4 is isomorphic to P1 \ { 0, 1,∞}.

The following is the concrete definition of the closure of M0,n. We can intuitively see that the
missing points in the closure are 0, 1 and ∞.

Definition 5. The space M0,n parametrizes stable n-pointed rational curves. And one of those
curves is a tuple (C, p1, . . . , pn) such that:

1. C is a connected curve of arithmetic genus 0 with at worst simple nodal singularities.

2. The points p1, . . . , pn are distinct and non-singular on C.
3. Each irreducible component of C has at least 3 special points (be it marked points or nodes).

The fact that nodal singularities may appear, allows us to have t equal one of the missing points.
And, although before it seemed that the point t was not varying throughout P1, it actually was
under the guise of projective equivalence.

4 Conclusion

Enumerative geometry poses a wealth of interesting questions, some of which have yet to be an-
swered. Our understanding of moduli spaces has increased while studying the original question in
this paper. The task now is to continue studying more general moduli spaces, by increasing the
number of marked points or by increasing the genus of the curves. While the combinatorics used
to describe non-zero genus curves is currently very complicated, the author hopes to explore these
topics in the future.
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