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Abstract

In this paper, we motivate and develop definitions and fundamental results in frame theory using linear
algebra. We then present definitions and results from matroid theory and use them to further understand the
linear independence of frames and their Naimark complements.

1 Introduction

An orthonormal basis is a fundamental concept in linear algebra that plays a crucial role in many computational tasks,
as these bases span the entire underlying space and their vectors are pairwise orthogonal. For example, orthonormal
bases have many applications in information theory especially with compression algorithms that use nonstandard
orthonormal basis to better align with the structure of the data. Frames aim to generalize orthonormal bases by
adding redundancy which can act as a method of error and noise mitigation and often align with the structure of
the data even more so than an orthonormal basis, which is a motivation behind dictionary learning algorithms.

This paper aims to explore the theory and applications of frames, building on concepts from linear algebra and
combinatorics. In Section 2, we define orthonormal bases and discuss some of the properties that motivate the use
of frames. We then introduce frames in Section 2.3, exploring their linear algebraic properties and providing proofs
for many of the fundamental theorems in frame theory. In Section 3, we study the structure of frames through their
linear independence, using matroids. Finally, in Section 4, we provide an example of an equiangular tight frame and
its associated Naimark complement, using matroids to analyze their structure and properties.

2 Frames

2.1 Orthonormal Bases

A frame is a generalization of an orthonormal basis often adding redundancy. To start we will define an orthonormal
basis and then prove Parseval’s equality which motivates the definition of a frame.

Throughout this paper, we will be looking at vector spaces that are also inner product spaces, which allows us to
define orthogonality. We will restrict our focus to vector spaces with coefficients that are subfields of C, usually R or
C, however, the theorems and definitions we will develop may apply to finite inner product spaces over other fields.

A vector space V along with an inner product on V , often denoted (V, ⟨−,−⟩), is called an inner product space.
Throughout this paper, we will assume all vector spaces are inner product spaces and hence just refer to an inner
product space as a vector space V . We will also consider the norm ||−|| induced by an inner product.

Definition 2.1. Suppose V is an inner product space with v, w ∈ V then v and w are called orthogonal when
⟨v, w⟩ = 0. A collection of vectors (ej)j is called orthogonal if ⟨ej , ek⟩ = 0 for j ̸= k. If in addition ||ej || = 1 for all
j, then (ej)j is called orthonormal. If (ej)j is a basis for V then it is called an orthonormal basis.

For any finite-dimensional vector space Fn, the standard basis is orthonormal and is often denoted as (ej)
n
j=1.

However, in this paper, we may use (ej)
n
j=1 to denote any orthonormal basis.

2.2 Properties of Orthogonality

In this part, we will look at important properties of orthonormal vectors which we will use to motivate the definition
of a frame.

Proposition 2.2. Let V be a finite inner product space with an orthonormal collection of vectors (ej)
n
j=1. The

following are equivalent
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(1 ) if x ∈ V is such that ⟨x, ej⟩ = 0 for all j ∈ [n] then x = 0

(2 ) (ej)
n
j=1 spans V . (Notice that this means (ej)

n
j=1 is an orthonormal basis, meaning n = dimV )

(3 ) x =
∑n

j=1 ⟨x, ej⟩ ej for all x ∈ V

(4 ) ||x||2 =
∑n

j=1 | ⟨x, ej⟩ |2 for all x ∈ V (Parseval’s equality)

In many applications of orthonormal bases (3) is of critical importance and highlights why orthonormal bases
are often more desirable than general bases. (4) is relevant in defining a frame so we will provide proof that (4) is
equivalent to the other 3 parts.

Proof. (3) ⇒ (4): First for any x ∈ V let x =
∑n

j=1 ⟨x, ej⟩ ej and notice that from the Pythagorean theorem

||x||2 =
∣∣∣∣∣∣∑n

j=1 ⟨x, ej⟩ ej
∣∣∣∣∣∣2 =

∑n
j=1 | ⟨x, ej⟩ |2.

We will show (4) ⇒ (1) by contrapositive: Assume there exists a vector x ∈ V such that ⟨x, ej⟩ = 0 for all j ∈ [n]
but ||x|| > 0. However notice that

∑n
j=1 | ⟨x, ej⟩ |2 =

∑n
j=1 0 = 0, And so the (4) is not true.

2.3 Frames

Now that we have seen some useful properties of orthonormal basis we can generalize them to create what is called
a frame. In this case, we will define a frame with a weakened version of Parseval’s equality which was seen in
Proposition 2.2, where we showed that Parseval’s equality was a necessary and sufficient condition to show that a
finite collection of orthonormal vectors was an orthonormal basis.

Definition 2.3. A finite collection of vectors (φj)j from Fd is a frame for Fd if there exists optimal constants
0 < A ≤ B <∞ such that

A ||x||2 ≤
n∑

j=1

| ⟨x, φj⟩ |2 ≤ B ||x||2 ∀x ∈ Fd (1)

where A is called the lower frame bound and B is called the upper frame bound.

• A frame is tight if A = B, in which case A is used to denote the single frame bound, and Parseval if A = B = 1.

• A finite frame is equal-norm if there exists some β such that ||φj || = β for all j and unit-norm if β = 1.

• A unit-norm collection of vectors (φj) is called equiangular if there exists some α ≥ 0 such that ⟨φj , φk⟩ = α
when j ̸= k.

We may denote a finite unit-norm tight frame as FUNTF and an equiangular tight frame as ETF. Notice that
from this definition every orthonormal basis is a Parseval frame. This is an equivalence.

Proposition 2.4. A collection of vectors (φj)j from Fd is a Parseval unit-norm frame if and only if it is an
orthonormal basis.

This suggests that the nicest frames are those that are FUNTF but are not Parseval or those that are Parseval
but not unit norm, and in general both cases are equivalent up to rescaling.

In frame theory it is often useful to describe frames with matrices, four are of particular importance for this paper

Definition 2.5. Let (φj)
n
j=1 be a collection of vectors in an inner product space V over a field F

• Φ : Fn → V is the matrix whose columns are the vectors (φj)
n
j=1, in which case by right multiplication

c 7→
∑n

j=1 cjφj (Synthesis operator)

• Φ∗ : V → Fn and by right multiplication takes x 7→ (
∑d

j=1 Φjkxj)
n
k=1 = (⟨x, φk⟩)nk=1 (Analysis operator)

• S = ΦΦ∗ : V → V , by right multiplication x 7→
∑n

j=1 ⟨x, φj⟩φj (Frame operator)

• G = Φ∗Φ = (⟨φk, φj⟩)jk, and so right multiplication maps x→ (
∑n

k=1 ck ⟨φk, φj⟩)nj=1 (Gram Matrix)

In this paper we will often denote a frame, or a collection of vectors, by its synthesis operator, that is we may
write Φ = (φj)

n
j=1 and use Φ to denote both the associated matrix and the frame. As we will see in proposition 2.8,

singular values, and singular value decompositions play an important role in frame theory.
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Definition 2.6. Let B be a m×n matrix with elements in F. Let (λj)
n
j be the n eigenvalues of B∗B. In which case

we case we call (σj)
n
j the singular values of B where σj =

√
λj.

Definition 2.7. Let B be a m × n matrix with elements in F. The singular value decomposition, often referred to
as the SVD, is a factorization

B = UΣV ∗

Where U is an m ×m unitary matrix, V is an n × n unitary matrix, and Σ is a m × n diagonal matrix with non-

increasing non-negative real diagonal entries. The diagonal values of Σ, (σj)
min(m,n)
j=1 are the first min(m,n) singular

values of B. Furthermore, the number of non-zero singular values is equal to the rank of B.

Every matrix has a singular value decomposition but in general, this decomposition is not unique. However with
a fixed ordering on the singular values, the matrix Σ is uniquely determined by the matrix B, and we can gain a lot
of information from the singular values and the existence of an SVD of Φ.

Proposition 2.8. Let (φj)
n
j=1 be a collection of vectors in Fd with Φ its associated d×n (synthesis operator) matrix

with SVD Φ = UΣV ∗, where the diagonal entries of Σ are decreasing. Then Φ is the synthesis operator for the frame
(φj)

n
j=1 with optimal bounds A and B if and only if n ≥ d, σ2

d = A and σ2
1 = B. Furthermore, (φj)

n
j=1 is a tight

frame with frame bound A if and only if the rows of Φ are orthogonal with norm
√
A.

This proposition shows that a frame is tight if and only if the frame operator is a positive multiple of the identity,
more specifically when S = AI where A is the frame bound. We have also shown that frames must have at least as
many vectors as the dimension, we can strengthen this by observing that the first d singular values must be non-zero.

Corollary 2.9. Let (φj)
n
j=1 be a collection of vectors in Fd. Then (φj)

n
j=1 is a frame if and only if (φj)

n
j=1 spans

Fd.

Proof. Notice that (φj)
n
j=1 spans Fd if and only if the rank of Φ is d And this is the case if and only if there are d

non-zero singular values, and by proposition 2.8 this is the case if and only if (φj)
n
j=1 is a frame.

To conclude this section we will highlight a connection between Parseval frames and orthonormal bases through
orthonormal projection maps.

Theorem 2.10. (Naimark’s Theorem). The collection (φj)
n
j=1 is a Parseval frame for V = Fd if and only if there

exists and inner product space W ⊇ V with orthonormal basis (ej)
n
j=1 and orthogonal projection P : W → W onto

V such that φj = Pej for all j.

Proof. We will provide a short sketch of the ⇒ direction: Assume that n > d then it is the case that the d n-
dimensional orthonormal row vectors can be extended to an orthonormal basis over Fn by adding n−d n-dimensional
vectors (vℓ)

n−d
ℓ=1 such that the rows of Φ and (vℓ)

n−d
ℓ=1 form an orthonormal basis. Let Ψ be the matrix whose rows are

(vℓ)
n−d
ℓ=1 and we will denote the columns as (ψj)

n
j=1. This forms an orthonormal basis for Fn which are the vectors((

φj

ψj

))n

j=1

Finally, consider the projection of Fn onto the first d coordinates.

This theorem can be extended to tight frames with frame bound A by first rescaling to get a Parseval frame.
This theorem provides a very powerful duality of tight frames, which are the vectors (ψj), which share many of the
properties of the original frame.

Definition 2.11. Let (φj)
n
j=1 be a tight frame for Fd with corresponding synthesis operator Φ with frame bound A

and consider vectors (ψj)
n
j=1 in Fn−d with associated matrix Ψ. If Φ∗Φ + Ψ∗Ψ = AI then we call Ψ a Naimark

complement of Φ.

As we will see in proposition 2.12 and in later propositions in section 3, Naimark complements share many of the
same properties as the original frame.

Proposition 2.12. Let Φ = (φj)
n
j=1 be a tight frame for Fd with frame bound A and Naimark complement Ψ =

(ψj)
n
j=1 in Fn−d. Then Ψ is a tight frame with frame bound A and likewise, Φ is the Naimark complement of Ψ.

Furthermore, if Φ is equiangular or equal-norm then so is Ψ.

3



3 Matroids

A key advantage to interpreting data with a frame, as opposed to an orthonormal basis, is to make the data more
robust to noise and loss of information. Many frames achieve this robustness through redundancies. However, in
proposition 2.9, we saw that a frame was equivalent to a collection of vectors that spans a vector space. And it is often
important to distinguish good frames from bad frames with notions of geometric and algebraic spread. In definition
2.3 we defined an equiangular frame that encapsulations an understanding of good geometric spread. However,
this does not guarantee a good algebraic spread. Algebraic spread encapsulates how mutually linearly dependent a
collection of data is, and is formalized with the definition of spark.

Definition 3.1. Let Φ = (φj)
n
j=1 be a collection of vectors in Fd, then the spark of Φ is defined as

sparkΦ = min{m | (φjk)
m
k=1 ⊆ (φj)

n
j=1 linearly dependent, j1 < j2 < · · · < jm}

If spark(Φ) = d+ 1 then we say Φ is full spark.

This means the spark is the size of the smallest subset of linearly dependent vectors. A frame being full spark
means any subset of d vectors forms a basis. In general 1 ≤ spark(Φ) ≤ rank(Φ) + 1, which suggests that while the
rank encapsulates the maximal (linear) independence of a collection of vectors the spark in a sense encapsulates the
worst-case, or minimal dependence, of a collection of vectors. The spark captures a sense of how mutually redundant
the vectors are.

As we will see throughout this section, matroids act as important and useful tools in encapsulating the dependence
of a frame and its algebraic spread.

Definition 3.2. A matroid M is a pair (E, I) where E is a finite set, called the ground set and I ⊆ P(E) the
independent sets, such that

(I1) ∅ ∈ I

(I2) (Hereditary Property) If I ∈ I and J ⊆ I then J ∈ I

(I3) (Exchange): If I1, I2 ∈ I with |I1| < |I2| then there exists some x ∈ I2 − I1 with I1 ∪ x ∈ I.

Definition 3.3. Let M = (E, I) be a matroid. If there exists a collection of vectors (φj)j∈E in Fd for some field F,
indexed by E such that (φj)j∈I is linearly independent if and only if I ∈ I the M is called representable over F. If
a matroid is representable over any field it is called regular. Likewise, if there exists a graph, not necessarily simple,
Γ = (V,E) such that I ⊆ E corresponds to an acyclic subgraph if and only if I ∈ I then M is called a graphical
matroid.

A well-studied question in matroid theory is the classification of graphical and representable matroids. Theorem
3.4 is a rather surprising theorem.

Theorem 3.4. Every graphical matroid is regular

Proof. Let M be a graphical matroid, that is, there exists some graph Γ = (V,E) such that M(Γ) = (E, IΓ), where
IΓ are the subsets of E that form acyclic subgraphs, is the same matroid as M . Fix an ordering for the vertices and
edges, that is V = (vj)

n
j=1 and V = (ej)

m
j=1. And we will construct an oriented incidence matrix for Γ which is the

matrix B̃ = (b̃jk) where

b̃jk =


1 if ek connects vj and vℓ where j < ℓ

−1 if ek connects vj and vℓ where j > ℓ

0 otherwise

In a sense, this construction gives an orientation to our graph. Each column b̃k encodes an edge ek as a vector: if
ek is an edge connecting vi and vj where i < j, we have the vector with a 1 in the ith column and a −1 in the jth
column, in essence, it gives each edge an orientation based on the fixed ordering of the vertices, effectively labeling
vi as the source and vj as the sink. Loops are encoded as zero vectors and duplicate edges are duplicate vectors.

Notice that this allows us to relate a path in a graph with a linear combination of the corresponding columns.
Notice that for a path in G: a sequence vj1ek1vj2ek2vj3 , we can add the corresponding columns associated with the
edges in the path taking into account the orientations. That is if j1 < j2 the path walks along the edge according to
its orientation, and if j1 > j2 the path walks against the orientation of the edge so we must multiply it by −1 when
adding the edge. And so the sum of the vectors corresponding to each edge, taking into account the orientation of
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the edges, results in the vector with a 1 in the j1 row and a −1 in the j3 column, the starting the ending vertices of
the path. Notice that for a cycle vj1ek1vj2ek2 . . . vjrekrvj1 , the path vj1ek1vj2ek2 . . . vjr would result in a vector with
a 1 in the j1 row and a −1 in the jr row, and so when the vector corresponding to ekr

is added, taking into account
the orientation, we would add a vector with 1 in the jr row and a −1 in the j1 row resulting in the zero vector.

Now we want to show that M(Γ) and the matroid formed from the columns of the incidence matrix M(B̃) =
(B̃, IB̃) are the same. Consider first a subset of the columns that are linearly independent: (bj)j∈I ∈ IB̃ . This means
that no non-trivial linear combination gives the zero vector, and so no sum of edges forms a cycle. And so the set of
edges (ej)j∈I ∈ IΓ. Conversely, consider a subset of edges (ej)j∈I ∈ IΓ such that the induced subgraph is acyclic.

And consider a linear combination of the corresponding columns
∑

j∈I αj b̃j = 0. Notice that because the subgraph

is acyclic it is a forest and so contains a leaf vertex vk with an edge connecting it eℓ. Notice that this means that b̃ℓ
is the only vector with a non-zero entry in the kth row meaning αℓ = 0. Notice that this effectively removes eℓ from
the graph which results in an acyclic subgraph itself. We may repeat this inductively for all edges to conclude that
αℓ = 0 for all ℓ, meaning (b̃j)j∈I ∈ IB̃ .

The contrapositive of this theorem provides a way to show certain matroids are not graphical, by showing there
exists a field such that a matroid is not representable.

Matroids have many cryptomorphic definitions, which correspond to properties that determine the matroid.

Definition 3.5. Let M = (E, I) be a matroid, a circuit is a subset C ⊆ E such that every proper subset I ⊊ C is an
independent set, that is I ∈ I. And a basis is an independence set B ∈ I of maximal size, meaning for the addition
of any other element x ∈ E it is the case that B ∪ x ̸∈ I.

The size of the smallest circuit is called the girth of the matroid and for a representable matroid is equivalent to
the spark of its vectors. This allows us to interpret frames as matroids.

Both the set of circuits and the set of bases as defined in definition 3.5 determine a matroid and so motivate
cryptomorphic definitions

Definition 3.6. A matroid M is a pair (E, C) where E is a finite set, called the ground set and C ⊆ P(E) the set
of circuits, such that

(C1) ∅ ̸∈ C

(C2) If C1, C2 ∈ C with C1 ⊆ C2 then C1 = C2

(C3) (Circuit Elemenation) If C1, C2 ∈ C with e ∈ C1 ∩ C2 there exists C3 ∈ C1 ∩ C2 − e such that C3 ∈ C

Definition 3.7. A matroid M is a pair (E,B) where E is a finite set, called the ground set and B ⊆ P(E) the set
of bases, such that

(B1) B is not empty

(B2) (exchange): if B1, B2 ∈ B with B1 ̸= B2 then for any x ∈ B1 − B2 there exists some y ∈ B2 − B1 such that
B1 − x+ y ∈ B

Proposition 3.8. A collection of vectors Φ = (φj)
n
j=1 in Fd has full spark if and only if M(Φ) is the uniform matrix,

Ud,n = ([n],
(
[n]
d

)
) by the basis definition 3.7.

Proof. Assume M(Φ) is the uniform matroid meaning any collection of less than or equal to d vectors is linearly
independent as all subsets of size d are linearly dependent and so not circuits. This also means any subset of d+ 1
vectors is a circuit, and so the girth of the matroid is d+ 1. Now assume that the collection of vectors (φj)

n
j=1 has

spark d + 1. This means the girth of the matroid M(Φ) = ([n], I) is d + 1 and so every subset of d + 1 vectors is
dependent and so must contain a circuit, and because circuits are of size at least d+ 1, then every such subset is a
circuit, meaning every subset of size d is in I, which form the basis.

In definition 2.11, we presented the Naimark complement, which was a complementary construction for a tight
frame. As noted in proposition 2.12 Naimark complements shared many nice properties such as having equiangular
vectors if and only if the original frame did. In proposition 3.12 and corollary 3.13, we will continue this duality of
properties and relate their corresponding matroids and spark, which at first seems unrelated as the dimension of the
underlying space of a tight frame and its Naimark complement generally differ. However, in the remainder of this
section, we will show that the Naimark complement is very closely related to the dual matroid.
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Proposition 3.9. Let M = (E,B) be a matroid. Then M∗ = (E,B∗), called the dual matroid, where B∗ =
{E −B|B ∈ B} is a matroid.

Example 3.10. As an example we will look at the uniform matroid of Ud,n = ([n],
(
[n]
d

)
) where B∗ = {[n]−B|B ∈(

[n]
d

)
} =

(
[n]
n−d

)
meaning U∗

d,n = Un−d,n

In the construction of the dual matroid, we use basis elements of M to create the basis element of M∗, that is we
may say that the complement of a basis (over E) is a basis of the dual matroid. It is also useful to think about dual
matroid under different definitions, that is we want to understand the complement of a circuit and a complement of
an independent set.

Proposition 3.11. Let M be a matroid with I its independent sets and C its circuits. Then for I ∈ I, the set E− I
is a spanning set of M∗ and for C ∈ C, the set E−C is a hyperplane of M∗, a maximally non-spanning independent
set of M∗.

Proof. Let I ∈ I, meaning there exists some basis B such that I ⊆ B. This means that E −B ⊆ E − I, and so the
complement of an independence set contains a basis in M∗ and so is a spanning set of M∗ and the converse is also
true.

Let C be a circuit of M , and notice that E−C cannot be a spanning set as if it were E− (E−C) = C would be
an independence set. However, notice that the removal of any element e ∈ C would give C−e ∈ I meaning E−C+e
would be a spanning set for all c ̸∈ E − C. Meaning E − C is a maximal non-spanning set, a hyperplane.

In frame theory, matroid duals connect tight frames with their Naimark complements.

Proposition 3.12. Let Φ = (φj)
n
j=1 be a tight frame with frame bound A for Fd with n > d with Naimark complement

(ψj)
n
j=1 in Fn−d. Then M(Φ)∗ =M(Ψ).

Proof. Let X =

(
Φ
Ψ

)
as in the proof of theorem 2.10. And let (uj)

n
j=1 =

((
φj

ψj

))n

j=1

denote the columns of X.

Notice that X∗X = Φ∗Φ + Ψ∗Ψ = AI which means the vectors (uj) are pairwise orthogonal. Now because both
M(Φ) and M(Ψ) are matroids over the same number of vectors, n, we will assume that both have the same ground
set E = [n], which indexes the vectors. Because n > d there must exist a subset of vectors in (φj)

n
j=1 that is linearly

dependent, meaning it contains a circuit. Let D ∈ [n] be the indices of a dependent set, meaning (φj)j∈D is linearly
dependent. And so there exists αj ∈ F for all j ∈ D such that not all αj are zero and∑

j∈D

αjφj = 0

However because the vectors (uj) form an orthonormal basis we have that∑
j∈D

αjuj ̸= 0 and so
∑
j∈D

αjψj ̸= 0

Now we want to show that the vectors in (ψj) with indices [n] − D do not span Fn−d (This aligns with what we
expect to see based on the interpretation in proposition 3.11 assuming the statement is true). So let ṽ =

∑
j∈D αjψj

and let k ∈ [n]−D and notice that

⟨ṽ, ψk⟩ =

〈∑
j∈D

αjψj , ψk

〉
=

〈∑
j∈D

αj(uk − φk), uk − φk

〉

=

〈∑
j∈D

αjuk, uk

〉
−

〈∑
j∈D

αjφk, φk

〉
=

∑
j∈D

α ⟨uj , uk⟩ − ⟨0, φk⟩ = 0

which means that the non-zero vector ṽ is orthogonal to the space (ψj)j∈[n]−D and so not in its span, meaning the
vectors with indices [n]−D is not a spanning set. Notice that this means for any S ⊆ [n] that is a spanning set in
M(Ψ), the set [n]−S must be an independence set by the contrapositive of the above. Furthermore if S was a basis
of M(Ψ), meaning |S| = n−d, then |[n]−S| = d meaning it would be a maximal independence set in M(Φ), a basis.
Recall that Naimark complements are reflective and so we know that Φ is the Naimark complement of Ψ, and so it
is also the case that for any basis of M(Φ) the complement is a basis in M(Ψ). And so M(Φ)∗ =M(Ψ).
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This proposition has a very useful corollary for full spark tight frames.

Corollary 3.13. A tight frame Φ = (φj)
n
j=1 is full spark if and only if its Naimark complements Ψ = (ψj)

n
j=1 is full

spark.

Proof. Recall that if Ψ is the Naimark complement of Φ then Φ is the Naimark complement of Ψ and so it suffices
to only show one direction.

Assume Φ is full spark which means that M(Φ) = Ud,n. And so M(Ψ) = M(Φ)∗ = U∗
d,n = Un−d,n and so from

proposition 3.8 Ψ has full spark.

4 Framing the Theory

Now that we have developed some of the frame theory needed we will look at an example of a real frame in R6, and
its Naimark complement in R10.

Φ =
1√
3


1 −1 1 −1 1 −1 1 −1 0 0 0 0 0 0 0 0
1 1 −1 −1 0 0 0 0 1 −1 1 −1 0 0 0 0
1 −1 −1 1 0 0 0 0 0 0 0 0 1 −1 1 −1
0 0 0 0 1 1 −1 −1 1 1 −1 −1 0 0 0 0
0 0 0 0 1 −1 −1 1 0 0 0 0 1 1 −1 −1
0 0 0 0 0 0 0 0 1 −1 −1 1 1 −1 −1 1


Example 4.1. Φ is an ETF with frame bound A = 2 and spark(Φ) = 4.

Proof. If we index these vectors from left to right by [16] we may notice that 1, 2, 3 and 4 form a circuit. Furthermore,
no three vectors from the same block are linearly dependent and for any three vectors in different blocks, each vector
has one dimension that only that vector reaches. And in the case that two vectors are from the same block, they
would not be linearly dependent and the third would reach dimensions the others do not. And so no three vectors
are linearly dependent. So the smallest circuit is of size 4, meaning the spark is 4.

Now consider a Naimark complement which we will call Ψ. We know that Ψ is a frame for R10 with 16 vectors.
Using the properties of Naimark complements and matroids we can analyze the properties of the Naimark complement
without directly computing the possible vectors.

Example 4.2. The frame Ψ is an ETF with frame found A = 2 and has spark(Ψ) = 8

Proof. By proposition 2.12 we know that Ψ is an ETF with frame bound A = 2. So we need only compute the
spark. We will look at the corresponding matroid where we know that M(Ψ) =M(Φ)∗. And from proposition 3.11
we know that the smallest circuit in M(Ψ) corresponds to the maximal hyperplane of M(Φ). So it suffices to find
the maximal number of columns of Φ that do not span R3. Notice that any 2 blocks of vectors span all but one of
the dimensions corresponding to the non-zero entries, and any ninth vector not in the blocks spans R10. This means
any 2 blocks is a maximal hyperplane of size 8. And because a maximal hyperplane H corresponds to a minimal
circuit by E −H which would have a size of 16− 8 = 8, and so the spark of Ψ is 8.

Notice that for R10 a full spark frame would have a spark of 11.
A motivation behind this example is in the computability of spark, for frames. In general computing the girth

of a matroid can be very difficult: for graphical matroids, girth can be computed rather easily, but for representable
matroids, it can be very computationally difficult. In general, for linear matroids finding girth is w[1]-hard with
respect to the girth or rank of the matroid. And FPT with respect to a combination of the rank of the matroid and
the size of the underlying field. Meaning that finding good algebraic spread in frames is very hard unless you have
a small dimensional space and the frame is on a small field.

Naimark complements can reduce the dimension. Given dim d < n and n − d < d then studying the Naimark
complement is likely easier, at least heuristically. Although in this case, we are computing cogirth, which is the
problem of finding non-spanning sets, it is still the case that the dimension of the space can be dramatically reduced.
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