Math 502: Combinatorics
 Homework 1

Recall that you must hand in a subset of the problems for which deleting any problem makes the total score less than 10. The maximum possible score on this homework is 10 points. See the syllabus for scoring details.

Problems

1. (2) [3 points] Show that every polynomial in two variables x, y can be written uniquely as a sum of a (two variable) symmetric polynomial and a (two variable) antisymmetric polynomial.
2. (1+) [2 points] (Review.) Write the power sum symmetric function p_{3} in terms of elementary symmetric functions.
3. (1+) [2 points] Use the ω involution discussed in class (to be discussed on Wed. Jan 25) to use the formula you obtained in the previous problem to express p_{3} in terms of homogenous symmetric functions.
4. $(1+)$ [2 points] Determine whether each of $e_{(3,2,2)}, h_{(3,2,2)}, p_{(3,2,2)}$, and $m_{(3,2,2)}$ are Schur positive. (You can use Sage and the symmetric functions package.)
5. (1+) [2 points] Compute the Schur polynomial $s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)$ as a ratio of determinants (i.e. a ratio of antisymmetric functions, to be discussed in class on Monday Jan 23), and compute it using semistandard Young tableaux, and show that the two computations agree.
6. (2-) [3 points] Prove that

$$
\sum_{\lambda} m_{\lambda}\left(x_{1}, x_{2}, \ldots\right) e_{\lambda}\left(y_{1}, y_{2}, \ldots\right)=\prod_{i, j=1}^{\infty}\left(1+x_{i} y_{j}\right)
$$

7. $(2+)$ [4 points] Stanley chapter 7 problem 7.3. (Scroll down to next two pages of this document for photos of the problems from Stanley)
8. $(2+)$ [4 points] Stanley chapter 7 problem 7.4.
9. $(2+)$ [4 points] Stanley chapter 7 problem 7.5.
10. $(2+)$ [4 points] Stanley chapter 7 problem 7.6.
11. $(2+)[4$ points $]$ Stanley chapter 7 problem 7.7.
12. $(2+)$ [4 points] Stanley chapter 7 problem 7.8.
13. $(2+)$ [4 points] Stanley chapter 7 problem 7.9.
7.2. Let $\operatorname{Par}(n)$ denote the set of all part
a. [2] Show that $\operatorname{Par}(n)$ is a latice.
b. $[2+]$ Show the smallest value of n for which $\operatorname{Par}(n)$ is not graded.
c. $[2+]$ Find the the maximum number of elements covered by an element
d. $[2+]$ Show that the maximum
of $\operatorname{Par}(n)$ is $\left\lfloor\frac{1}{2}(\sqrt{1+8 n}-3)\right\rfloor$.
e. $[2+]$ Show that the shortest maximal chain in $\operatorname{Par}(n)$ has length $2 n-4$ for $n \geq 3$.
$[3-]$ Show that the longest maximal chain in $\operatorname{Par}(n)$ has length
$\frac{1}{3} m\left(m^{2}+3 r-1\right) \sim \frac{1}{3}(2 n)^{3 / 2}$,
where $n=\binom{m+1}{2}+r, 0 \leq r \leq m$.
7.3. $[2+]$ Expand the power series $\prod_{i \geq 1}\left(1+x_{i}+x_{i}^{2}\right)$ in terms of the elementary symmetric functions.
7.4. $[2+]$ Show that

$$
h_{r}\left(x_{1}, \ldots, x_{n}\right)=\sum_{k=1}^{n} x_{k}^{n-1+r} \prod_{i \neq k}\left(x_{k}-x_{i}\right)^{-1}
$$

7.5. $[2+]$ Prove the identity

$$
\begin{equation*}
\left(1-\sum_{n \geq 1} p_{n} t^{n}\right)^{-1}=\frac{\sum_{n \geq 0} h_{n} t^{n}}{1-\sum_{n \geq 1}(n-1) h_{n} t^{n}} \tag{7.165}
\end{equation*}
$$

7.6. $[2+]$ Let $w \in \mathfrak{S}_{n}$ have cycle type λ. Give a direct bijective proof of Proposition 7.7.3, i.e., the number of elements $v \in \mathfrak{S}_{n}$ commuting with w is equal to $z_{\lambda}=1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots$, where $m_{i}=m_{i}(\lambda)$.
7.7. $[2+]$ Let Ω^{n} denote the subspace of Λ^{n} consisting of all $f \in \Lambda^{n}$ satisfying

$$
f\left(x_{1},-x_{1}, x_{3}, x_{4}, \ldots\right)=f\left(x_{3}, x_{4}, \ldots\right)
$$

For instance, $\left.m_{1}=x_{1}+x_{2}+\ldots\right)=f\left(x_{3}, x_{4}, \ldots\right)$
the dimension of Ω^{n} in term $+\cdots \in \Omega^{1}$. Find a "simple" basis for Ω^{n}. Express restriction.

Exercises

18. [2+] Let $f \in \Lambda^{n}$, and for any $g \in \Lambda^{n}$ define $g_{k} \in \Lambda^{n k}$ by

$$
g_{k}\left(x_{1}, x_{2}, \ldots\right)=g\left(x_{1}^{k}, x_{2}^{k}, \ldots\right)
$$

Show that

$$
\omega f_{k}=(-1)^{n(k-1)}(\omega f)_{k}
$$

79. $[2+]$ Let λ be a partition of n of length ℓ. Define the forgotten symmetric function f_{λ} by

$$
f_{\lambda}=\varepsilon_{\lambda} \omega\left(m_{\lambda}\right),
$$

where $\varepsilon_{\lambda}=(-1)^{n-\ell}$ as usual. (Sometimes f_{λ} is defined just as $\omega\left(m_{\lambda}\right)$). Let $f_{\lambda}=\sum_{\mu} a_{\lambda \mu} m_{\mu}$. Show that $a_{\lambda \mu}$ is equal to the number of distinct permutations $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right)$ of the sequence ($\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}$) such that
$\left\{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{i}: 1 \leq i \leq \ell\right\} \supseteq\left\{\mu_{1}+\mu_{2}+\cdots+\mu_{j}: 1 \leq j \leq \ell(\mu)\right\}$.
For instance, if $\lambda=(3,2,1,1)$ and $\mu=(5,2)$, then $a_{\lambda \mu}=5$, corresponding to $(3,2,1,1),(2,3,1,1),(1,1,3,2),(1,3,1,2)$, and (3, 1, 1, 2).
7.10. $[3-]$ Let $\lambda \in \mathrm{Par}$, and define the symmetric power series

$$
\begin{aligned}
& A_{\lambda}(x)=\prod_{\alpha}\left(1-x^{\alpha}\right)^{-1} \\
& B_{\lambda}(x)=\prod_{\alpha}\left(1+x^{\alpha}\right),
\end{aligned}
$$

where α ranges over all distinct permutations of $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$. Find a formula for $\omega A_{\lambda}(x)$ and $\omega B_{\lambda}(x)$ in terms of $A_{\mu}(x)$'s and $B_{\mu}(x)$'s. For instance,

$$
\begin{aligned}
\omega A_{1}(x) & =B_{1}(x) \\
\omega A_{11}(x) & =A_{2}(x) A_{11}(x) \\
\omega A_{2}(x) & =A_{2}(x)^{-1} .
\end{aligned}
$$

In general, express the answer in terms of the coefficients $a_{\lambda \mu}$ defined in Exercise 7.9.
7.11. $[2+]$ Let q be an indeterminate. Find the Schur function expansion of $\sum_{\mu \vdash n}$ $n^{\ell(\mu)-1}$
7.10.5, i.e., if $\mu, \lambda \vdash n$ and $\mu \leq \lambda$

