Math 502: Combinatorics II Midterm Exam, March 13

INSTRUCTIONS: This is an in-class exam; you have 50 minutes to work on the problems. You may not use calculators, cell phones, notes, references, or other aid besides a pen or pencil. Scratch paper will be provided. If you run out of room to write up your answer below a problem statement, continue on the back of that page.

Print your name and sign this exam on the lines below. Have fun!

SCORING: Each problem is worth the total possible number of points indicated below, where number 6 is a bonus problem. Partial credit will be given for significant progress towards a solution on proof-based problems.

Problem	Score	Points	Problem	Score	Points
1.		8	4.		5
2.		5	5.		2
3.		5	6.		+1

Total:

HONOR PLEDGE: This exam is my own work. I have not given, received, or used any unauthorized assistance.

Print Name

Signature

- 1. **Symmetric function calculations:** For the following problems, only an answer is required, no explanation or proof.
 - (a) (1 point) Write the elementary symmetric function $e_{(2,1)}$ in terms of monomial symmetric functions.

(b) (1 point) Write the Schur function $s_{(2,1)}$ in terms of monomial symmetric functions.

(c) (1 point) Write the homogeneous symmetric function $h_{(2,1)}$ in terms of Schur functions.

(d) (1 point) Write the elementary symmetric function $e_{(2,1)}$ in terms of Schur functions.

(e) (1 point) Write the power sum symmetric function p_3 in terms of elementary symmetric functions.

(f) (1 point) Compute $\langle p_3, m_{(2,1)}\rangle$ where \langle,\rangle is the Hall inner product.

(g) (1 point) Compute $\langle s_{(4,2,1,1)/(2,1)}, s_{(3,1,1)} \rangle$.

(h) (1 point) Compute $\langle s_{(4,2,1,1)}, s_{(2,1)}s_{(3,1,1)} \rangle$.

- 2. Jacobi-Trudi bijection: Let $\lambda = (\lambda_1, \ldots, \lambda_k)$ and $\mu = (\mu_1, \ldots, \mu_j)$ be partitions with μ fitting inside λ , i.e., $\mu_i \leq \lambda_i$ for all i.
 - (a) (2 points) Describe a bijection between the semistandard Young tableaux of skew shape λ/μ whose entries are in $\{1, 2, \ldots, m\}$ and the nonintersecting lattice paths from A_1, \ldots, A_k to B_1, \ldots, B_k where $A_i = (\mu_i i, 1)$ and $B_i = (\lambda_i i, m)$ for each i (where we set $\mu_i = 0$ if i > j). You do not have to prove that your map is a bijection.
 - (b) (1 point) Apply your bijection to the following skew tableau of shape (3, 3, 1)/(1):

- 3. Designs, short answer: The points and 3-flats of $\mathbb{P}^5_{\mathbb{F}_4} = \mathrm{PG}(5,4)$ form a $2 (v, k, \lambda)$ design.
 - (a) (1 point) Find v.
 - (b) (1 point) Find k.
 - (c) (1 point) Find λ .
 - (d) (1 point) Find b, the number of blocks of this design.
 - (e) (1 point) Find r, the number of blocks containing a given point.

4. Difference sets: Let G be an abelian group with size v = |G|, and let $D \subset G$ be a subset of the elements of size k = |D| (not necessarily a subgroup). Then D is a (v, k, λ) -difference set if the multiset of elements

$$\{d_i - d_j : d_i, d_j \in D\}$$

contains every non-identity element of G exactly λ times. For instance, $\{0, 1, 3\}$ is a (7, 3, 1)-difference set for $G = \mathbb{Z}/7\mathbb{Z}$.

- (a) (1 point) Show that $\{0, 1, 3\}$ is a (7, 3, 1)-difference set for $G = \mathbb{Z}/7\mathbb{Z}$.
- (b) (3 points) Suppose D is a (v, k, λ) -difference set for G. Show that the pair (G, \mathcal{B}) where $\mathcal{B} = \{D + g : g \in G\}$ is a $2 (v, k, \lambda)$ design. This design is called the *development* of D.
- (c) (1 point) Compute the development of $\{0, 1, 3\}$ in $\mathbb{Z}/7\mathbb{Z}$.

5. MOLS: (2 points) Construct two mutually orthogonal Latin squares of order 5.

6. (Bonus, +1 point) Construct four mutually orthogonal Latin squares of order 5.