Homework 7

This homework is simply the midterm from last year. It will be scored out of 50 points and then the total score will be divided by 5 for your homework grade.

This year's midterm will aim to be similar in content and difficulty. I recommend you also study the twelvefold way and any homework problems that you did not solve.

Have fun!

Math 501: Combinatorics I, Fall 2022 Midterm Exam

INSTRUCTIONS: You have 50 minutes to complete this exam. You may not use calculators, cell phones, notes, references, or other aid besides a pen or pencil. Scratch paper will be provided. If you run out of room to write up your answer below a problem statement, continue on the back of that page. Print your name and sign this exam on the lines below.

SCORING: Problem 1 is worth 20 total points, and problems 2 and 3 are each worth 15 , with a maximum possible total score of 50 . Partial credit will be given for significant progress towards a solution. The table below is for internal scoring use; do not fill it out.

HONOR PLEDGE: This exam is my own work. I have not given, received, or used any unauthorized assistance.

[^0]
Signature

1. (Short answer - 2 points per part) Show some scratch work, since even if you get the wrong answer you might get 1 point if you had the right idea but just made a simple calculation error! (Full formal proofs not necessary for this part.)
(a) You reach into a large bag of mixed Halloween candy with plenty of each of 4 types of candies, and take out a handful of 7 pieces of candy. How many possible combinations of candy could you have ended up with?
(b) How many ways can you pick 3 different types of candies out of the bag in part (a) and give one to each of 3 specific distinct friends?
(c) How many set partitions of $\{1,2,3,4,5\}$ have three blocks?
(d) How many binary sequences (sequences of 0 s and 1 s) of length 5 are there?
(e) How many binary sequences of length 10 have exactly 5 zeros and 5 ones?
(f) How many binary sequences of length 10 , with 5 zeros and 5 ones, have the ballot property (that as you read from left to right, the number of 1's you have read never exceeds the number of 0 's)?
(g) How many binary sequences of length 7 have no two consecutive 1s?
(h) How many labeled trees on 5 vertices are there?
(i) How many unlabeled trees on 5 vertices are there? Draw them.
(j) For each of the trees T you drew in the previous question, how many labeled trees have unlabeled tree T ? Check that your answers add up to your answer to question (e).
2. (15 points) The Carlitz-Riordan q-Catalan numbers $C_{n}(q)$ are defined as follows. Define $\mathcal{D}(n)$ to be the set of all Dyck paths of height n. Then define

$$
C_{n}(q)=\sum_{D \in \mathcal{D}(n)} q^{\operatorname{area}(D)}
$$

where the area of a Dyck path D is the number of unit squares in the $n \times n$ grid lying above the path, as shown below.

$$
\text { area }=4
$$

Also define $\mathcal{B}(n)$ to be the set of all ballot words of length $2 n$, that is, permutations of $0^{n} 1^{n}$ such that, when read from left to right, the number of 1 's never outweighs the number of 0s. Prove, using a weight-preserving bijection, that

$$
C_{n}(q)=\sum_{b \in \mathcal{B}(n)} q^{\operatorname{inv}(b)}
$$

where inv is the usual inversion statistic counting the number of pairs consisting of a 1 to the left of a 0 .
Write your proofs below; an extra blank page is attached before the next problem to give you plenty of room; feel free to use the backs of pages too.
3. (15 points) Let a_{n} be the number of sequences of numbers of length n in which:

- Each number is one of $0,1,2$.
- No two 2's are consecutive.

For instance, 021100120 is a valid such sequence but 022210012 is not.
(a) (5 pts) Find a recursion for a_{n} (this should be similar to the Fibonacci recurrence). Remember to include the initial conditions!
(b) (5 pts) Use the recursion to find a closed form for the generating function of a_{n}.
(c) (5 pts) Use the formula discussed in class for solving linear recurrences to find an explicit formula for a_{n} in terms of n.

Write your proofs below; an extra blank page is attached to give you plenty of room; feel free to use the backs of pages too.

[^0]: Print Name

