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2. Let d > 1 be a positive integer. A d-ary de Bruijn sequence of degree n is a sequence of length
dn containing every length n sequence in {0, 1, 2, . . . , d− 1}n exactly once as a circular factor.

(a) (1+) [2 points] Show that there always exists a d-ary de Bruijn sequence of degree n for
any n.

Proof. We begin by constructing the d-ary de Bruijn graph, which we will call Bn
d . Con-

struct a digraph where the vertex set is labeled with all possible length n − 1 sequences
with characters from {0, 1, 2, . . . , d − 1}. There is an edge from vertex vi to vertex vj if
the last n − 2 characters in the label of vi match the first n − 2 characters of the label
of vj . We will label the edge from vi to vj by the character appended to the last n − 2
characters of vi to obtain the label on vj .

We first note that for a given vertex vi, there are precisely d vertices that have the same
n− 2 first characters as the last n− 2 characters in the label of vi; thus, the out-degree
of vi is d. Similarly, there are exactly d vertices with that have labels ending in the same
n − 2 characters as the first n − 2 characters as the label on vi, so the in-degree of vi is
also d. Thus, Bn

d is balanced.

Moreover, we claim thatBn
d is connected. Given two vertices vi, vj with labels a1a2 . . . an−1

and b1b2 . . . bn−1 respectively, we form the concatenation a1a2 . . . an−1b1b2 . . . bn−1. The
first n − 1 characters label the start vertex. Incrementing our search window by 1, we
find that a2a3 . . . an−1b1 is also a vertex in Bn

d that has an edge from vi by our definition
of Bn

d . Continuing in this manner, we find a path from vi to vj , and therefore Bn
d is

connected. The combination of being balanced and connected shows that Bn
d contains an

Eulerian tour.

We claim that an Eulerian tour of Bn
d corresponds to a d-ary de Bruijn sequence. We

first observe that the edges of Bn
d are in one-to-one correspondence with the length n

sequences in {0, 1, 2, . . . , d − 1}n by concatenating the label on an edge e on the end of
the label of init(e). Each n−1 length sequence is represented exactly once on the vertices
of Bn

d , and the d possible completions of any particular sequence are represented on the
d edges leaving the vertex labeled with that sequence.

Given an Eulerian tour of Bn
d , we construct a sequence bnd as follows: starting with the

empty sequence, append the label on each edge as we reach it in the tour. Observe that
because of how Bn

d was constructed, after appending a character corresponding to an edge
e, the last n−1 characters in bnd (possibly wrapping around to the end of the sequence, as
the starting vertex of an Eulerian tour is arbitrary) give the label of the vertex fin(e), and
the last n characters give the length n sequence that e is correspondence with. Therefore,
because the Eulerian tour traverses each edge exactly once, the sequence bnd contains each
length n sequence exactly once, and is therefore a de Bruijn sequence.

(b) (2) [3 points] Find the number of d-ary de Bruijn sequences of degree n that begin with
n zeroes.

Proof. By the previous part, the number of d-ary de Bruijn sequences of degree n is equal
to the number of Eulerian tours in Bn

d . In particular, the d-ary de Bruijn sequences
beginning with n zeroes corresponds to the Eulerian tours starting at the vertex labeled
with n− 1 zeroes where the first edge in the tour is the edge labeled 0. So, we will count
the number of Eulerian tours in Bn

d that begin with a particular edge.
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Let A be the adjacency matrix of Bn
d , the directed d-ary de Bruijn graph. Because Bn

d has
dn−1 vertices (one for each distinct word of length n−1 with d letters), A is a dn−1×dn−1
matrix. We observe that the proof of Lemma 5.6.13 does not rely on the fact that d = 2,
so the holds in the case of general d as well.

Therefore, by Lemma 5.6.13, An−1 is the matrix of all 1s (since the i, j entry of An−1

counts the number of paths from vi to vj , and by Lemma 5.6.13, there is exactly one such
path). As this is a rank 1 dn−1 × dn−1 matrix, it has only one non-zero eigenvalue, and
by the eigenvector (1, 1, . . . , 1), that eigenvalue is dn−1.

However, ifA has eigenvalues λ1, . . . , λdn−1 , then the eigenvalues ofAn−1 are λn−11 , . . . , λn−1dn−1 .
By taking an nth root, we find that the eigenvalues of A are dζ once (where ζ is some
n− 1st root of unity) and 0 dn−1 − 1 times.

To determine ζ, we will use the trace of A. That is, how many vertices have loops? In
Bn

d , a vertex has a loop if and only if the last n− 2 characters in the label are the same
as the first n − 2 characters; this happens exactly when the label is n − 1 copies of the
same character. Thus, there are precisely d vertices in Bn

d with loops, so the trace of A
is d. Because the sum of the eigenvalues is equal to the trace, we have that dζ = d, so
ζ = 1.

We now note that we can construct L(Bn
d ) as

L(Bn
d ) = dI −A.

Because L(Bn
d ) is defined as a polynomial in A, we can calculate its eigenvalues by plug-

ging each eigenvalue into that same polynomial; this gives us that the eigenvalues of
L(Bn

d ) are d (dn−1 − 1 times, once for each 0 eigenvalue of A) and 0 once (for the single
d eigenvalue of A).

By Corollary 5.6.7, we can compute the number of Eulerian tours starting at a particular
edge e as

ε(Bn
d , e) =

1

dn−1
dd

n−1−1 ((d− 1)!)
dn−1

= dd
n−1−n((d− 1)!)d

n−1

=
1

dn
(d!)d

n−1

.

3. (2−) [3 points] An undirected Eulerian tour is a tour on the edges of an undirected graph using
every undirected edge exactly once (in just one direction). Derive necessary and sufficient
conditions for the existence of an undirected Eulerian tour in an undirected graph. Prove your
result.

Solution: The necessary and sufficient conditions for the existence of an Eulerian tour are
that the graph must be connected with every vertex having an even degree. It is clear that
if an Eulerian tour exists, these conditions hold; connectedness is trivial, and the even degree
is a consequence of the fact that the tour must enter and leave each vertex via paired edges
without reusing any edge, so each vertex must have even degree.

To see that these conditions are sufficient, suppose G is a connected graph with every vertex
having even degree. We first show that G contains a tour: starting at some vertex v1, begin by
following some edge e1 to another vertex v2. Then, because v2 has even degree and the tour
has used an odd number of edges at v2 (in this case, only e1), there must be at least one unused
edge e2 that we can leave along. Continuing in this fashion, we observe that at each step, if we
arrive at a vertex vj other than v1, the tour must have used an odd number of edges incident
to vj , as any possible previous visits used edges in pairs (entering and leaving), and the tour
just used a single edge to arrive at vj . Thus, there must be at least one edge remaining to
leave along. The only vertex at which it is possible for this algorithm to terminate (i.e., for
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there to be no unused edges to follow) is the starting vertex v1; when the tour arrives back at
v1 (which it must eventually do, since there are only finitely many vertices and we can’t “get
stuck” anywhere else) it will have used an even number of edges at v1, as the arriving edge
and the very first edge used e1 will balance each other out. Thus, there is a tour in G.

Let E be a tour in G of maximal length, and suppose to produce a contradiction that E is not
Eulerian. That is, there exists some edge e in G that is not used. Without loss of generality,
suppose that e is incident to a vertex on E (if it were not, there would be another unused edge
that was incident, because G is connected). Then consider G′ = GrE . Because G is balanced
and E is a tour, G′ is also balanced. Consider the connected component of G′ that contains e.
This component, H ′, is connected and balanced, so by the previous paragraph, H ′ contains a
tour starting at e. We can thus extend E by following E up to the point where it meets the
tour in H ′ for the first time, following that tour, then continuing along E . This contradicts
our assumption that E is of maximal length, so E is Eulerian.

4. The adjacency matrix of a directed graph D = (V,E) on a vertex set V = {1, 2, . . . , n} is the
matrix A = (aij) whose i, j entry is 1 if (i, j) ∈ E and 0 otherwise.

(d) (2−) [3 points] Let bn be the number of sequences of length n + 1 with entries from
{1, 2, 3} that start with 1, end with 3, and do not contain the subsequences 22 or 23.
Find a closed formula for the generating function of bn using the transfer-matrix method,
by constructing a directed graph in which certain paths are counted by bn. You may use
a computer to calculate the determinants, but you must write out the directed graph and
the corresponding matrices.

Proof. Let D be the digraph shown below:

1

2 3

Then bn also counts the number of paths in D starting at 1 and ending at 3. Note that
D has adjacency matrix

A =

1 1 1
1 0 0
1 1 1

 .

To use the transfer matrix method we will need to compute the determinant of

I −Ax =

1− x −x −x
−x 1 0
−x −x 1− x

 .

This has determinant

(1− x)2 − x3 − x2 − x2(1− x) = 1− 2x− 3x2.
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We will also need to take the determinant det(I −Ax; 3, 1), where this is found by taking
determinant of the minor obtained by removing the 3rd row and 1st column; that is, we
are computing ∣∣∣∣ −x −x

1 0

∣∣∣∣ = x.

Thus, by the transfer-matrix method, a closed form for the generating function for bn is
given by

(−1)1+3x

1− 2x− 3x2
=

x

1− 2x− 3x2
.
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