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1. Let n be a positive integer and let λ = (λ1, λ2, . . . , λk) be a partition of n (recall that this
means that each λi is a positive integer and that λ1 ≥ λ2 ≥ · · · ≥ λk). Define(

n

λ

)
=

(
n

λ1, λ2, . . . , λk

)
to be the number of distinct rearrangements of letters in the word 1λ12λ2 · · · kλk (where the
exponent indicates the multiplicity of the letter – for instance, the notation 132432 refers to
the word 111222233). This is classically known as the ‘MISSISSIPPI’ problem, since it gives
a formula for the number of ways of rearranging the letters in the word MISSISSIPPI. The
symbol

(
n
λ

)
is often referred to as a “multinomial coefficient.”

(a) (1) [1 point] Show that(
n

λ

)
=

(
n

λ1

)(
n− λ1
λ2

)
· · ·
(
n− λ1 − · · · − λk−1

λk

)
=

n!

λ1! · · ·λk!
.

Verify that
(
n
k

)
=
(

n
k,n−k

)
.

Proof. We begin counting the number of rearrangmenets of 1λ12λ2 · · · kλk by counting
the number of ways of choosing which of the n places in the word are filled by the λ1 1’s,
which is

(
n
λ1

)
. We then choose which of the n− λ1 spots are filled by the λ2 2’s, which is(

n−λ1

λ2

)
, and so forth for each λi. Thus,(

n

λ

)
=

(
n

λ1

)(
n− λ1
λ2

)
· · ·
(
n− λ1 − · · · − λk−1

.

)
If we use the formula that

(
n
k

)
= n!

k!(n−k)! , we find that(
n

λ1

)(
n− λ1
λ2

)
· · ·
(
n− λ1 − · · · − λk−1

λk

)
=

n!

λ1!(n− λ1)!

(n− λ1)!

(λ2)!(n− λ1 − λ2)!
· · · (n− λ1 − · · · − λk−1)

(λk)!(n− λ1 − · · · − λk)!
,

which, after canceling terms and recognizing that (n− λ1 − · · · − λk)! = 0! = 1, gives the
desired expression (

n

λ

)
=

n!

λ1 · · ·λk!
.

(b) (1+) [2 points] Give a combinatorial proof that(
n

λ

)
=
∑
i

(
n− 1

λ(i)

)
where λ(i) is the partition of n − 1 formed by reducing the i-th part by 1 (and then
re-ordering the parts from greatest to least). For instance, if λ = (3, 2, 2, 1), then λ(1) =
(2, 2, 2, 1), λ(2) = (3, 2, 1, 1), λ(3) = (3, 2, 1, 1, ), and λ(4) = (3, 2, 2).
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Proof. We observe that
(
n−1
λ(i)

)
counts the number of rearrangements of 1λ12λ2 · · · kλk

that have the character i in the first position. So, we can find the total number of
rearrangements of 1λ12λ2 · · · kλk by summing over i.

(c) (1+) [2 points] Show that these are indeed “multinomial coefficients” in the sense that(
n
λ

)
is the coefficient of xλ1

1 xλ2
2 · · ·x

λk

k in

(x1 + x2 + · · ·+ xk)n.

Proof. We consider (x1 + x2 + · · ·+ xk)n as

(x1 + x2 + · · ·+ xk)(x1 + x2 + · · ·+ xk) · · · (x1 + x2 + · · ·+ xk), (1)

then consider the coefficient on xλ1
1 xλ2

2 · · ·x
λk

k as the number of ways of assembling this
product. Given a rearrangement of the word W = 1λ12λ2 · · · kλk , we can associate posi-
tions in W with terms in the product in Equation 1. Then if W has an i in position j, we
choose xi to be the element of term n that appears in our monomial. This is a bijection
between rearrangements of W and ways that the monomial xλ1

1 xλ2
2 · · ·x

λk

k can appear in
the expansion of Equation 1, so the coefficient is

(
n
λ

)
.

2. (1+) [2 points] Use the recursion for the Stirling numbers of the second kind to give a proof
by induction on n that

xn =
∑
k

S(n, k)(x)k

(where here x is just a variable, not a positive integer.)

Proof. First, observe that x1 = S(1, 1)(x)1, which simplifies to the tautology x = x, showing
that the base case holds.

Next, observe that

xn+1 = xxn = x

n∑
k=1

S(n, k)(x)k =

n∑
k=1

S(n, k)x(x)k (2)

by the inductive hypothesis. Recalling the recursion for (x)k, that

(x)k = (x)k−1(x− k + 1),

we reindex k to see that

(x)k+1 = (x)k(x− k) = x(x)k − k(x)k.

Solving this for x(x)k gives us that

x(x)k = (x)k+1 + k(x)k.

Substituting this into Equation 2 we obtain

n∑
k=1

S(n, k)((x)k+1 + k(x)k) =

n∑
k=1

S(n, k)(x)k+1 +

n∑
k=1

kS(n, k)(x)k.

We reindex the first sum to see that this is equivalent to

n+1∑
k=2

S(n, k − 1)(x)k +

n∑
k=1

kS(n, k)(x)k =

n+1∑
k=1

(S(n, k − 1) + kS(n, k))(x)k, (3)
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where the combining of sums with different summation bounds is justified by the fact that
S(n, k) = 0 for all k < 1 and k > n. We now recall the recursion for S(n, k):

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).

Reindexing this in n, we see that

S(n+ 1, k) = S(n, k − 1) + kS(n, k).

If we substitute this recursion into the right-hand side of Equation 3, we obtain

n+1∑
k=1

S(n+ 1, k)(x)k,

which is precisely what we needed to show.

4. (2) [3 points] Show that, if a permutation π can be written as a reduced word using an even
number of transpositions, then inv(π) is even. Similarly, if it can be written as a product of an
odd number of transpositions, then inv(π) is odd. Conclude that the number of transpositions
in any two reduced words for a permutation must have the same parity (even or oddness).

Thus, we can define the sign of a permutation π, denoted sgn(π), to be 1 if it is a product of
an even number of transpositions and −1 if it is a product of an odd number of transpositions.
Show that

sgn(π ◦ σ) = sgn(π) sgn(σ)

for any two permutations π and σ.

Proof. We can view the permutation π in list form as being obtained by applying π as a
product of adjacent transpositions Si to the simply ordered word 1 2 3 . . . n. Observe that
inv(1 2 3 . . . n) = 0, and that applying Si to any permutation in list form changes inv by
precisely 1: if i and i+ 1 were properly ordered before, then after the application of Si, they
are in reverse order, and inv has increased by one, while if they were in reverse order before,
then after they are properly ordered and inv has decreased by 1.

Therefore, if π can be written as a reduced word using an even number of transpositions,
inv(π) differs from 0 by an even amount, and as 0 is even, inv(π) must be even. Similarly,
inv(π) differs from 0 by an odd amount if π can be written as a reduced word using an odd
number of transpositions. Since inv(π) depends only on π, not on the particular form of the
reduced word representing π, the parity of the number of transpositions in any reduced word
for π must be invariant.

To see that sgn(π ◦σ) = sgn(π) sgn(σ), we observe that to get π ◦σ into reduced word format,
we are only cancelling identical adjacent transpositions that appear consecutively in π◦σ; that
is, if SiSi appears in π ◦ σ, we remove them. Note that in doing so, we are always removing
precisely two transpositions, so the parity of the number of transpositions in π◦σ is unchanged.
Therefore, sgn(π ◦ σ) is odd if and only if exactly one of sgn(π) or sgn(σ) are odd, which is
precisely the condition needed to make sgn(π ◦ σ) = sgn(π) sgn(σ) hold.
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