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A partition X\ of a positive integer n is a nonincreasing
sequence (A1, A2, ..., A\m) of positive integers whose sum is n.
Each \; is called a part of .

A partition into distinct parts is a partition whose parts are all
distinct.

For instance, (5,3,1,1) is a partition of 10, and (5,3,2) is a
partition of 10 into distinct parts.

» p(n) is the number of partitions of n.

» Q(n) is the number of partitions of n into distinct parts.

Neither p(n) nor Q(n) is known to have an elegant closed
formula.
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Background: Partitions

» Ramanujan discovered the famous congruence identities

p(5n+4) = 0 (mod 5)
p(7n+5) = 0 (mod 7)
p(1ln+6) = 0 (mod 11)

» The generating function for p(n):

> 1 1 1
Z p(n)qn = 2 3 e
= 1-gl—qg®1—g
» Define
(39)ec = (1—a)(1—aq)(1—aq*)(1—aq®)--

(39)n = (1—a)(1—aq)---(1—aq"?).

Then > p(n)q" = (q;é)m.
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» The generating function for p(n) can be used to show

(9°9°)3%
Zp5n+4 5m.

» The generating function for Q(n),

S QM = 1+ )1+ P)A+7%) - = (a: )ee,

can be used to show that Q(n) is nearly always divisible by 4.

» Do the most elementary proofs of these facts require the use
of generating functions and g-series manipulation?
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Background: Dyson’s Rank

>

Freeman Dyson conjectured that there is a combinatorial
invariant that sorts the partitions of 5n + 4 into 5 equal-sized
groups.

He defined the rank of a partition A = (A1,...,Anm) to be

A1 — m. For example, the rank of the partition (5,3,1,1) is
5—-4=1.

Atkin and Swinnerton-Dyer proved that the rank taken modulo
5 sorts the partitions of 5n + 4 into 5 equal-sized groups!

M. showed that Dyson's rank, taken modulo 4, sorts the
partitions of n having distinct parts into four equal sized
groups for nearly all positive integers n.



Background: Q(n) and G(z; q)

» We now invoke Principle #1: Behind every partition identity
is a g-series identity waiting to be discovered!



Background: Q(n) and G(z; q)

» We now invoke Principle #1: Behind every partition identity
is a g-series identity waiting to be discovered!

» Let Q(n, r) denote the number of partitions of n into distinct
parts having rank r, and define

G(zig) =) _ Q(nrz'q".



Background: Q(n) and G(z; q)

» We now invoke Principle #1: Behind every partition identity
is a g-series identity waiting to be discovered!

» Let Q(n, r) denote the number of partitions of n into distinct
parts having rank r, and define

= Z Q(n, r)z

» One can show that

s(s+1)/
G(z: q)—1+2 1_zq)(1_zq ) (1 — 2q°)

for z,q € C with |z| <1, |q] < 1.
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» The combinatorial result involving Dyson's rank modulo 4 can
be used to show that

oo o0
24) _ Z ikq(6k+1)2 + Z I-kflq(ﬁkfl)z
k=0 k=1

and
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k=0

» Note that the coefficients are roots of unity and are 0
whenever the exponent of g is not a perfect square. Such
functions are known as false theta functions.

» Resemble Ramanujan’s mock theta functions, which have
recently been linked to the theory of automorphic forms.
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lies an automorphic form
waiting to be discovered!
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» Let I' be a subgroup of SLy(Z). A modular form of weight
k e %Z with respect to ' is a meromorphic function

f:H—>(Csuchthatforany<i 3>€I',

b
f Cj I d) = e(a, b, c,d)(cz + d)f(2),

where |e(a, b, c,d)| = 1.

> If we define g = €®™'7, then

(1) == q***(q; 9)oo

is a modular form of weight 1/2. Thus g(g; g)%* is the Fourier
expansion of a modular form of weight 12.



Background: Maass forms

> Let I' be a subgroup of ['g(4). A harmonic weak Maass form
of weight k is a continuous modular form of weight 2 — k with
multiplier system

2k
o(a,b,c,d) = x(d) (5) ™

where x is a Dirichlet character of order 4 and

1 d=1 d4
eg=14. (mod 4) 1 st is annihilated by the weight-k
i d=3 (mod4)

hyperbolic Laplacian operator

02 02 0 0
— 22 4 2 ; T
A =—y <8X2+8y2>+1ky<8x+/ay>

and has at most linear exponential growth at the cusps of .
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» Every harmonic weak Maass form of weight k can be
decomposed as a sum of a holomorphic function (called its
“holomorphic part”) and another function (called its
“non-holomorphic part”).

» Example: Let P(n, r) denote the number of partitions of n
having rank r, and define R(z;q) =}, , P(n,r)z"q". Then

n2

q
Rlziq ‘”an (1—2gF)(1 -z 1q%)

» Bringmann, Ono: gR(i; g?*) is the holomorphic part of a
harmonic weak Maass form.

> R(i;q7Y) = R(—i;q7) = 55.G(i; q) + 2 G(—i; q). Thus
the behaviour of G(=%/, q) gives the behavior of R(+i/, q)
outside the unit disk! This also relates G(+i, q) to
automorphic forms.
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What about other roots of unity?

» Define the series

D(w;q) = (1+w)G(w; q) + (1 — w)G(—w; q).

» For roots of unity ¢ # 1, the following is a weight 0 modular

form:
1

(¢ 7)) = 912(¢q; 9) (¢ 05 9) s

Theorem (M., Ono)
We have that

. D 1.\ _24. n(27)*
q D(¢;q)D(¢" i q) =4 n(r)2n(C%; 27)

is a weight 1 modular form for roots of unity ¢ # +1.
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G(w;1/q) for roots of unity w

» We have seen that a linear combination of G(%/;1/q) is equal
to R(i; g). What happens outside the unit disk for other roots
of unity w?

» Define G(w; q) = G(w;1/q). Formal manipulation yields

5% —w—h)n
G(wiq) = Z(()

5 (w oG

» This is not a well-defined g-series, but we can consider the

) ~ ., 1\n
partial sums G¢(w; q) = >k _, %'
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The “difference of limits” theorem

» If —w is a primitive mth root of unity, then the sequence
formed by taking every mth term of the sequence of partial
sums G1( q), G2( q), ... converges to a well-defined
g-series!

Theorem (M., Ono)

Suppose that —w # 1 is an mth primitive root of unity. If

1< r < m, then lim,_ o0 Gmnir(w; q) is a well defined g-series and
satisfies

o~ N e (—w ) —1 1
n||—>n3>o Gmn—H(w' q) o n||—>nc]>o Gmn(w' q) + w+1 (w_lq; q)oo .




Example:
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The case —w = —1
—q-¢-¢-q¢"-¢-q¢"-q" —-g®— -
—q-q*—2q>—-2q"—3¢° —4¢° —5¢" — 6¢° — - --
—q-q¢*—2q°—-2q" —4¢° —5¢° —7q" = 9¢° — - --
°—8q" —104° -
—8q" —10¢° —

—q—q*—2q°—2q" — 4¢° — 5q

—q—q*—2q¢°> —2¢" — 4¢° — 5¢°

1+¢°+q>+2¢" +2¢° +3¢°+3q" +4¢° + -
1+¢°+q>+3q" +3¢° +5¢° +6q" +9¢° + -
1+¢°+q>+3¢" +3¢° +6q° +7q" +11¢° + - --
1+¢*+¢*+3¢" +3¢° +64° +7¢" +12¢® + - - -



Example: The case —w =€

27i/3

Let w = —e~2™/3, and let { = 2"/ =1 + ?i. Then

£
Q

§1( )
Ga(wi q)
Gr(w; q)

&
Q

Go(w; q)
Gs(wi q)
Gg(w; q)

S

§3( :q)
Ge(w; q)

1
1 +¢*'P+¢ P —29* + (P - 1) +2¢%q° + - -
1 +¢**+¢**—2¢* —2¢° + (¢* - 1)¢° + - -

C+Ca+ @ +CP+CCq -+ P+

(+Ca+a” +(1+¢)g° +Cq* —V3ig° — V3ig® + - -

C+Ca+a*+(1+¢°)g* + " — V3ig® + -

Ca+CP+CP+C¢q*+ P+ + -
g +¢%q" +(q° + V3ig* +(q° + 2+ V3)g’ + -+



Explicit formula for the case —w = —1

Theorem (M., Ono)

If we define the sequence b(n) such that
Yoneo(=1)"b(n)q" = TT;Zo(1 + g****), then

im_ Gan(1;q) = % (Z b(n)q" + .1 )

= (9 9)oo
and
lim Gony1(1; )—1 ib(n) o1
A AN T N

» The proof invokes Principle #2: Behind every good g-series
identity lies a combinatorial insight waiting to be discovered!




Relating G(w, g) to automorphic forms

» It is time to invoke Principle #3: Behind every good g-series
lies an automorphic form waiting to be discovered!



Relating a(w, q) to automorphic forms

» It is time to invoke Principle #3: Behind every good g-series
lies an automorphic form waiting to be discovered!
» For —w a primitive mth root of unity, it now makes sense to
define the g-series
G(w,q) = lim Gmn(w; q).

n—oo



Relating a(w, q) to automorphic forms

» It is time to invoke Principle #3: Behind every good g-series
lies an automorphic form waiting to be discovered!
» For —w a primitive mth root of unity, it now makes sense to
define the g-series
G(w,q) = lim Gmn(w; q).

n—oo

» Consider a twist of the third-order mock theta function of
Ramanujan:

Ywig) =Y T

o 2 .
nZO (q' q )n




Relating a(w, q) to automorphic forms

» It is time to invoke Principle #3: Behind every good g-series
lies an automorphic form waiting to be discovered!
» For —w a primitive mth root of unity, it now makes sense to
define the g-series
G(w,q) = lim Gmn(w; q).

n—oo

» Consider a twist of the third-order mock theta function of
Ramanujan:

Wwig) =Y T

o 2 .
nZO (q' q )n

» Also define

Dwiq) = (1+w™)G(wiq) + (1 —w?)($(-w’; q) - 1).



Relating G(w, g) to automorphic forms

Theorem (Folsom)

Let —w # 1 be a primitive mth root of unity. Then
g Y12D(w; q)D(w™"; q) is the weight 1 modular form
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Relating a(w, q) to automorphic forms

Theorem (Folsom)

Let —w # 1 be a primitive mth root of unity. Then
g Y12D(w; q)D(w™"; q) is the weight 1 modular form

1125 (- \D(w =L ) = 1t () (w?, q)
TP aDT ) = ey, @)

» Thus G and G appear within the theory of automorphic forms!
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Recap

» We have started with a combinatorial observation about
Dyson's rank for partitions into distinct parts, studied the
relevant g-series, related these to the theory of automorphic
forms, and related a kind of analytic continuation of the
g-series outside the unit disk to the theory of automorphic
forms.

> We have also found a formula for G(1;q) in terms of
well-known g-series using combinatorial methods.
» Challenges for the future:
» We have only computed a(w; q) in the case —w=1 = —1.
What about other roots of unity?
» Can more combinatorial results be obtained from the analytic
properties of G(w; q) or G(w; q) at other roots of unity?
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Sketch of Proof
» By the difference of limits theorem,

—1
(q; q)oo .

lim Goni1(1:q) — lim Gon(1; q) =
n—o00 n—oo

» We now wish to find the sum of the limits:

S(q) == lim Gans1(L; @) + lim Gan(1; ).

» Want to show: S(q) = > 72, b(n)q", where (—1)"b(n)
counts the number of partitions of n into distinct odd parts.
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Sketch of Proof

> Let c(t) be the coefficient of g* in S(q).

» Let Even(t) denote the number of partitions of t having an
even number of parts.

> Let Odd(t) denote the number of partitions of ¢ having an
odd number of parts.

» Using the formula for S(g), one can show combinatorially that
c(t) = Even(t) — Odd(t).

> It now suffices to show that (—1)*(Even(t) — Odd(t)) is equal
to the number of partitions of t into distinct odd parts. We
show this in the case that t is even.
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Sketch of Proof

» For each partition A of n, define p(\) to be the partition
formed by performing the following operation on A:
» If X has distinct odd parts, do nothing.
» Otherwise, let m be the smallest odd number such that the
sum of the parts of A of the form 2¥m is greater than m.
» Suppose m occurs more than once in A. If 2m occurs an even
number of times, merge two parts of size m, and otherwise,
split a part of size 2m into two parts of size m.
» Suppose m occurs at most once, and let 2/m be the smallest
even part of this form.
> If 22m occurs an odd number of times, split one copy of 2/m
into two copies of 2/ ~'m.
> If instead 2/m occurs an even number of times, merge two of
them if 27*1m occurs an even number of times, and otherwise
split one copy of 2tim.

» Can show that ¢ is an involution, and maps the partitions of
n into an even number of parts and not into distinct odd parts
bijectively to those having an odd number of parts.



Example: n=6

(5,1) ©
(4,2) « (4,1,1)
(3,3) < (6)
(3,1,1,1) < (3,2,1)
(2,2,1,1) < (2,2,2)
(1,1,1,1,1,1) < (2,1,1,1,1)

The partitions of 6 into an even number of parts are listed on the
left, and those having an odd number of parts are on the right.
The pairing is given by the involution ¢, and we see that the
number of partitions into distinct parts is Even(6) — Odd(6) =



