Monodromy and K-theory of Schubert curves via generalized jeu de taquin

Maria Monks Gillespie*, University of California, Berkeley Jake Levinson, University of Michigan

Rocky Mountain Algebraic Combinatorics Seminar December 4, 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 ${\scriptstyle \blacktriangleright}$ How many lines in \mathbb{CP}^3 pass through four given lines?

- How many lines in \mathbb{CP}^3 pass through four given lines?
- Answer: 2, because

$$\Omega_{\scriptscriptstyle \tt D}(\mathcal{F}^{(1)}) \cap \Omega_{\scriptscriptstyle \tt D}(\mathcal{F}^{(2)}) \cap \Omega_{\scriptscriptstyle \tt D}(\mathcal{F}^{(3)}) \cap \Omega_{\scriptscriptstyle \tt D}(\mathcal{F}^{(4)})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

has dimension 0 and size 2 for most choices of four lines.

- How many lines in \mathbb{CP}^3 pass through four given lines?
- Answer: 2, because

$$\Omega_{\scriptscriptstyle \tt C}(\mathcal{F}^{(1)}) \cap \Omega_{\scriptscriptstyle \tt C}(\mathcal{F}^{(2)}) \cap \Omega_{\scriptscriptstyle \tt C}(\mathcal{F}^{(3)}) \cap \Omega_{\scriptscriptstyle \tt C}(\mathcal{F}^{(4)})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

has dimension 0 and size 2 for most choices of four lines.

• **Grassmannian:** Gr(n, k) is the variety of *k*-dimensional subspaces of \mathbb{C}^n

- How many lines in \mathbb{CP}^3 pass through four given lines?
- Answer: 2, because

$$\Omega_{\scriptscriptstyle \tt C}(\mathcal{F}^{(1)}) \cap \Omega_{\scriptscriptstyle \tt C}(\mathcal{F}^{(2)}) \cap \Omega_{\scriptscriptstyle \tt C}(\mathcal{F}^{(3)}) \cap \Omega_{\scriptscriptstyle \tt C}(\mathcal{F}^{(4)})$$

has dimension 0 and size 2 for most choices of four lines.

- ▶ Grassmannian: Gr(n, k) is the variety of k-dimensional subspaces of Cⁿ
- **Rephrasing:** How many planes through (0,0) in \mathbb{C}^4 intersect four such planes in a line? Work in Gr(4,2).

- How many lines in \mathbb{CP}^3 pass through four given lines?
- Answer: 2, because

$$\Omega_{\scriptscriptstyle \tt C}(\mathcal{F}^{(1)}) \cap \Omega_{\scriptscriptstyle \tt C}(\mathcal{F}^{(2)}) \cap \Omega_{\scriptscriptstyle \tt C}(\mathcal{F}^{(3)}) \cap \Omega_{\scriptscriptstyle \tt C}(\mathcal{F}^{(4)})$$

has dimension 0 and size 2 for most choices of four lines.

- ▶ Grassmannian: Gr(n, k) is the variety of k-dimensional subspaces of Cⁿ
- **Rephrasing:** How many planes through (0,0) in \mathbb{C}^4 intersect four such planes in a line? Work in Gr(4,2).
- Schubert variety: For the complete flag

$$\mathcal{F}: \quad \varnothing = F_0 \subset F_1 \subset F_2 \subset \cdots \subset F_n = \mathbb{C}^n,$$

$$\Omega_{\lambda}(\mathcal{F}) = \{ V \in \operatorname{Gr}(n,k) : \dim V \cap F_{n-k+i-\lambda_i} \ge i \}$$

where λ fits inside a $k \times (n-k)$ rectangle \boxplus .

• Littlewood-Richardson rule: (Generalized.) Let $\lambda_1, \ldots, \lambda_r \subset \boxplus$ be partitions with $\sum |\lambda_i| = m$. Then in $H^*(\operatorname{Gr}(n,k))$, the classes $[\Omega_\lambda]$ form a basis and

$$[\Omega_{\lambda_1}]\cdot\cdots\cdot[\Omega_{\lambda_r}]=\sum_{|\nu|=m}c^{\nu}_{\lambda_1,\ldots,\lambda_r}\cdot[\Omega_{\nu}].$$

• Littlewood-Richardson rule: (Generalized.) Let $\lambda_1, \ldots, \lambda_r \subset \boxplus$ be partitions with $\sum |\lambda_i| = m$. Then in $H^*(\operatorname{Gr}(n,k))$, the classes $[\Omega_{\lambda}]$ form a basis and

$$[\Omega_{\lambda_1}] \cdot \cdots \cdot [\Omega_{\lambda_r}] = \sum_{|\nu|=m} c^{\nu}_{\lambda_1,\dots,\lambda_r} \cdot [\Omega_{\nu}].$$

• Example: The coefficient $c^{\boxplus}_{\alpha,\alpha,\alpha,\alpha}$ is 2, and

 $[\Omega_{\scriptscriptstyle \tt C}(\mathcal{F}^{(1)}) \cap \Omega_{\scriptscriptstyle \tt C}(\mathcal{F}^{(2)}) \cap \Omega_{\scriptscriptstyle \tt C}(\mathcal{F}^{(3)}) \cap \Omega_{\scriptscriptstyle \tt C}(\mathcal{F}^{(4)})] = \textit{c}_{\scriptscriptstyle \tt C, \tt C, \tt C, \tt C}^{\boxplus}[\Omega_{\boxplus}].$

Note that $\Omega_{\square}(\mathcal{F})$ is a single point for any flag \mathcal{F} .

• Littlewood-Richardson rule: (Generalized.) Let $\lambda_1, \ldots, \lambda_r \subset \boxplus$ be partitions with $\sum |\lambda_i| = m$. Then in $H^*(\operatorname{Gr}(n,k))$, the classes $[\Omega_{\lambda}]$ form a basis and

$$[\Omega_{\lambda_1}] \cdot \cdots \cdot [\Omega_{\lambda_r}] = \sum_{|\nu|=m} c^{\nu}_{\lambda_1,\dots,\lambda_r} \cdot [\Omega_{\nu}].$$

• Example: The coefficient $c_{\alpha,\alpha,\alpha,\alpha}^{\boxplus}$ is 2, and

$$[\Omega_{\tt u}(\mathcal{F}^{(1)}) \cap \Omega_{\tt u}(\mathcal{F}^{(2)}) \cap \Omega_{\tt u}(\mathcal{F}^{(3)}) \cap \Omega_{\tt u}(\mathcal{F}^{(4)})] = c_{\tt u, \tt u, \tt u}^{\boxplus}[\Omega_{\boxplus}].$$

Note that $\Omega_{\square}(\mathcal{F})$ is a single point for any flag \mathcal{F} .

• The coefficient $c_{\lambda_1,...,\lambda_r}^{\nu}$ counts the number of ways of filling ν with a chain of skew **Littlewood-Richardson tableaux** with contents $\lambda_1, \ldots, \lambda_r$.

Littlewood-Richardson tableau of shape ν/μ: Semistandard tableau whose reading word is ballot (a.k.a. Yamanouchi).

$$\mu = (3, 3, 1)$$

$$\nu = (6, 5, 5, 4, 1)$$

Littlewood-Richardson tableau of shape ν/μ: Semistandard tableau whose reading word is ballot (a.k.a. Yamanouchi).

 Semistandard: Entries are increasing down columns, weakly increasing across rows

Littlewood-Richardson tableau of shape ν/μ: Semistandard tableau whose reading word is ballot (a.k.a. Yamanouchi).

- Semistandard: Entries are increasing down columns, weakly increasing across rows
- Reading word: Left to right, bottom up (352344123322111).

 Littlewood-Richardson tableau of shape ν/μ: Semistandard tableau whose reading word is ballot (a.k.a. Yamanouchi).

- Semistandard: Entries are increasing down columns, weakly increasing across rows
- Reading word: Left to right, bottom up (352344123322111).
- ▶ **Ballot:** Every *suffix* of the reading word (e.g. 123322111) has at least as many *i*'s as (i + 1)'s for all $i \ge 1$.

Littlewood-Richardson tableau of shape ν/μ: Semistandard tableau whose reading word is ballot (a.k.a. Yamanouchi).

- Semistandard: Entries are increasing down columns, weakly increasing across rows
- Reading word: Left to right, bottom up (352344123322111).
- ▶ **Ballot:** Every *suffix* of the reading word (e.g. 123322111) has at least as many *i*'s as (i + 1)'s for all $i \ge 1$.
- **Content:** The sequence $(m_1, m_2, ...)$ where m_i is the number of *i*'s in the tableau. Here the content is (4, 4, 4, 2, 1).

 \blacktriangleright "How many" lines in \mathbb{CP}^3 pass through three given lines?

- "How many" lines in \mathbb{CP}^3 pass through three given lines?
- Answer: Infinity, forming a one-dimensional Schubert curve $\Omega_{\square}(\mathcal{F}^{(1)}) \cap \Omega_{\square}(\mathcal{F}^{(2)}) \cap \Omega_{\square}(\mathcal{F}^{(3)})$ in $\operatorname{Gr}(4,2)$.

- "How many" lines in \mathbb{CP}^3 pass through three given lines?
- Answer: Infinity, forming a one-dimensional Schubert curve $\Omega_{\square}(\mathcal{F}^{(1)}) \cap \Omega_{\square}(\mathcal{F}^{(2)}) \cap \Omega_{\square}(\mathcal{F}^{(3)})$ in $\operatorname{Gr}(4,2)$.
- If $\sum |\lambda_i| = k(n-k) 1$ then $\bigcap \Omega_{\lambda_i}$ usually has dimension 1.

- "How many" lines in \mathbb{CP}^3 pass through three given lines?
- Answer: Infinity, forming a one-dimensional Schubert curve $\Omega_{\square}(\mathcal{F}^{(1)}) \cap \Omega_{\square}(\mathcal{F}^{(2)}) \cap \Omega_{\square}(\mathcal{F}^{(3)}) \text{ in } \operatorname{Gr}(4,2).$
- If $\sum |\lambda_i| = k(n-k) 1$ then $\bigcap \Omega_{\lambda_i}$ usually has dimension 1.
- Special Schubert curves: flags \mathcal{F}_{t_i} are maximally tangent at real points of the **rational normal curve** in \mathbb{P}^{n-1} :

$$(1:t)\mapsto (1:t:t^2:\cdots:t^{n-1})$$

- "How many" lines in \mathbb{CP}^3 pass through **three** given lines?
- Answer: Infinity, forming a one-dimensional Schubert curve $\Omega_{\Box}(\mathcal{F}^{(1)}) \cap \Omega_{\Box}(\mathcal{F}^{(2)}) \cap \Omega_{\Box}(\mathcal{F}^{(3)})$ in $\operatorname{Gr}(4,2)$.
- If $\sum |\lambda_i| = k(n-k) 1$ then $\bigcap \Omega_{\lambda_i}$ usually has dimension 1.
- Special Schubert curves: flags \mathcal{F}_{t_i} are maximally tangent at real points of the **rational normal curve** in \mathbb{P}^{n-1} :

$$(1:t)\mapsto (1:t:t^2:\cdots:t^{n-1})$$

We restrict to the case of three real points, three partitions α, β, γ with |α| + |β| + |γ| = k(n − k) − 1; this is sufficient generality to demonstrate our results. Define

$$S = S(\alpha, \beta, \gamma) = \Omega_{\alpha}(\mathcal{F}_{0}) \cap \Omega_{\beta}(\mathcal{F}_{1}) \cap \Omega_{\gamma}(\mathcal{F}_{\infty})$$

Theorem. (Levinson, based on work of Speyer, Mukhin-Tarasov-Varchenko, Eisenbud-Harris, and others.) There is a map $S \to \mathbb{P}^1$ that makes $S(\mathbb{R})$ a smooth covering of the circle \mathbb{RP}^1 , with finite fibers of size

$$c_{\alpha,\beta,\gamma}^{\square} = c_{\alpha,\beta,\gamma,\square}^{\square} = c_{\alpha,\square,\beta,\gamma}^{\square}.$$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

- (Fiber over 0) ↔ LR(α, □, β, γ), the set of tableaux of shape γ^c/α with one inner corner marked as the "special box" and the rest a Littlewood-Richardson tableau of content β.
- (Fiber over ∞) $\leftrightarrow LR(\alpha, \beta, \Box, \gamma)$, the set of tableaux of shape γ^c/α with one **outer** corner marked as the "special box" and the rest a Littlewood-Richardson tableau of content β .

▶ The arcs of S(ℝ) covering ℝ₋ and ℝ₊ respectively induce the shuffling and evacuation-shuffling bijections sh and esh:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Monodromy operator: $\omega = \operatorname{sh} \circ \operatorname{esh}$

ο			1	1	1
α		1	2	2	2
	2	3	3		
1	3	4	4	γ	
3	4	5	×		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.

1

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.

	×	1	1	1
		2	2	
1	2	3		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.

	×	1	1	1
1	2	2	2	
	3	1		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.

×		1	1	1
1	2	2	2	
3	2	1		

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.

Х	1		1	1
1	2	2	2	
3	2	1		

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.

Х	1	1		1
1	2	2	2	
3	2	1		

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.
- Shuffling

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.
- Shuffling

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.
- Shuffling

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.
- Shuffling

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.
- Shuffling
- **Un-rectification:** Treat × as largest entry.

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.
- Shuffling
- **Un-rectification:** Treat × as largest entry.

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.
- Shuffling
- **Un-rectification:** Treat × as largest entry.

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.
- Shuffling
- **Un-rectification:** Treat × as largest entry.

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.
- Shuffling
- **Un-rectification:** Treat × as largest entry.

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.
- Shuffling
- **Un-rectification:** Treat × as largest entry.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.
- Shuffling
- **Un-rectification:** Treat × as largest entry.

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.
- Shuffling
- **Un-rectification:** Treat × as largest entry.

	1	1	1	1
	2	2	×	
2		3		

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.
- Shuffling
- **Un-rectification:** Treat × as largest entry.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.
- Shuffling
- Un-rectification: Treat × as largest entry.

$$\operatorname{esh}(T)$$

- Conjugation of shuffling by JDT rectification.
- **Rectification:** Treat × as 0.
- Shuffling
- Un-rectification: Treat × as largest entry.

• Shuffle again to compute $\omega = \operatorname{sh} \circ \operatorname{esh}$:

			×	1	1
ωT :		1	1	2	
	2	2	3		

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

ſ

• K-theory ring $K(\operatorname{Gr}(n,k))$ has additive basis $[\mathcal{O}_{\lambda}]$.

$$\begin{aligned} \mathcal{O}_{\mathcal{S}}] &= & [\mathcal{O}_{\alpha}] \cdot [\mathcal{O}_{\beta}] \cdot [\mathcal{O}_{\gamma}] \\ &= & \sum_{|\nu| \ge |\alpha| + |\beta| + |\gamma|} (-1)^{|\nu| - |\alpha| - |\beta| - |\gamma|} k_{\alpha, \beta, \gamma}^{\nu} [\mathcal{O}_{\nu}] \end{aligned}$$

• *K*-theory ring K(Gr(n, k)) has additive basis $[\mathcal{O}_{\lambda}]$.

$$\begin{aligned} [\mathcal{O}_{\mathcal{S}}] &= [\mathcal{O}_{\alpha}] \cdot [\mathcal{O}_{\beta}] \cdot [\mathcal{O}_{\gamma}] \\ &= \sum_{|\nu| \ge |\alpha| + |\beta| + |\gamma|} (-1)^{|\nu| - |\alpha| - |\beta| - |\gamma|} k_{\alpha, \beta, \gamma}^{\nu} [\mathcal{O}_{\nu}] \\ &= k_{\alpha, \beta, \gamma}^{\bigoplus} [\mathcal{O}_{\bigoplus}] - k_{\alpha, \beta, \gamma}^{\bigoplus} [\mathcal{O}_{\bigoplus}] \end{aligned}$$

• *K*-theory ring K(Gr(n, k)) has additive basis $[\mathcal{O}_{\lambda}]$.

$$\begin{split} [\mathcal{O}_{\mathcal{S}}] &= [\mathcal{O}_{\alpha}] \cdot [\mathcal{O}_{\beta}] \cdot [\mathcal{O}_{\gamma}] \\ &= \sum_{|\nu| \ge |\alpha| + |\beta| + |\gamma|} (-1)^{|\nu| - |\alpha| - |\beta| - |\gamma|} k_{\alpha, \beta, \gamma}^{\nu} [\mathcal{O}_{\nu}] \\ &= k_{\alpha, \beta, \gamma}^{\bigoplus} [\mathcal{O}_{\bigoplus}] - k_{\alpha, \beta, \gamma}^{\bigoplus} [\mathcal{O}_{\bigoplus}] \\ &= c_{\alpha, \beta, \gamma}^{\bigoplus} [\mathcal{O}_{\bigoplus}] - k_{\alpha, \beta, \gamma}^{\bigoplus} [\mathcal{O}_{\bigoplus}] \end{split}$$

• K-theory ring $K(\operatorname{Gr}(n,k))$ has additive basis $[\mathcal{O}_{\lambda}]$.

$$\begin{aligned} \mathcal{O}_{\mathcal{S}}] &= [\mathcal{O}_{\alpha}] \cdot [\mathcal{O}_{\beta}] \cdot [\mathcal{O}_{\gamma}] \\ &= \sum_{|\nu| \ge |\alpha| + |\beta| + |\gamma|} (-1)^{|\nu| - |\alpha| - |\beta| - |\gamma|} k_{\alpha, \beta, \gamma}^{\nu} [\mathcal{O}_{\nu}] \\ &= k_{\alpha, \beta, \gamma}^{\bigoplus} [\mathcal{O}_{\bigoplus}] - k_{\alpha, \beta, \gamma}^{\bigoplus} [\mathcal{O}_{\bigoplus}] \\ &= c_{\alpha, \beta, \gamma}^{\bigoplus} [\mathcal{O}_{\bigoplus}] - k_{\alpha, \beta, \gamma}^{\bigoplus} [\mathcal{O}_{\bigoplus}] \end{aligned}$$

• Consider holomorphic Euler characteristic $\chi(\mathcal{O}_S) = h^0(\mathcal{O}_S) - h^1(\mathcal{O}_S)$. The map χ is additive on *K*-theory.

• K-theory ring K(Gr(n, k)) has additive basis $[\mathcal{O}_{\lambda}]$.

$$\begin{aligned} \mathcal{O}_{\mathcal{S}}] &= [\mathcal{O}_{\alpha}] \cdot [\mathcal{O}_{\beta}] \cdot [\mathcal{O}_{\gamma}] \\ &= \sum_{|\nu| \ge |\alpha| + |\beta| + |\gamma|} (-1)^{|\nu| - |\alpha| - |\beta| - |\gamma|} k_{\alpha, \beta, \gamma}^{\nu} [\mathcal{O}_{\nu}] \\ &= k_{\alpha, \beta, \gamma}^{\bigoplus} [\mathcal{O}_{\bigoplus}] - k_{\alpha, \beta, \gamma}^{\bigoplus} [\mathcal{O}_{\bigoplus}] \\ &= c_{\alpha, \beta, \gamma}^{\bigoplus} [\mathcal{O}_{\bigoplus}] - k_{\alpha, \beta, \gamma}^{\bigoplus} [\mathcal{O}_{\bigoplus}] \end{aligned}$$

• Consider holomorphic Euler characteristic $\chi(\mathcal{O}_S) = h^0(\mathcal{O}_S) - h^1(\mathcal{O}_S)$. The map χ is additive on *K*-theory. We have $\chi(\mathcal{O}_{\square \square}) = \chi(\mathcal{O}_{\square \square}) = 1$, so

$$\chi(\mathcal{O}_{\mathcal{S}}) = c_{\alpha,\beta,\gamma}^{\square} - k_{\alpha,\beta,\gamma}^{\square}$$
$$= |\mathrm{LR}(\alpha,\Box,\beta,\gamma)| - k_{\alpha,\beta,\gamma}^{\square}$$

Pechenik and Yong introduced genomic tableaux.

- Pechenik and Yong introduced genomic tableaux.
- ▶ The data $(T, \{\boxtimes_1, \boxtimes_2\})$ corresponds to a genomic tableau if
 - (i) The squares are non-adjacent and contain the same entry *i*,
 - (ii) There are no *i*'s between \boxtimes_1 and \boxtimes_2 in the reading word of T,

(iii) Deleting either \boxtimes_1 or \boxtimes_2 results in a ballot reading word.

- Pechenik and Yong introduced genomic tableaux.
- The data $(T, \{\boxtimes_1, \boxtimes_2\})$ corresponds to a genomic tableau if
 - (i) The squares are non-adjacent and contain the same entry *i*,
 (ii) There are no *i*'s between ⊠₁ and ⊠₂ in the reading word of *T*,
 (iii) Deleting either ⊠₁ or ⊠₂ results in a ballot reading word.
- Which of the following are genomic tableaux?

- Pechenik and Yong introduced genomic tableaux.
- ▶ The data $(T, \{\boxtimes_1, \boxtimes_2\})$ corresponds to a genomic tableau if
 - (i) The squares are non-adjacent and contain the same entry *i*,
 (ii) There are no *i*'s between ⊠₁ and ⊠₂ in the reading word of *T*,
 (iii) Deleting either ⊠₁ or ⊠₂ results in a ballot reading word.

• Which of the following are genomic tableaux?

• *K*-theoretic content: $\beta = (4, 2, 1)$

- Pechenik and Yong introduced genomic tableaux.
- The data $(T, \{\boxtimes_1, \boxtimes_2\})$ corresponds to a genomic tableau if
 - (i) The squares are non-adjacent and contain the same entry *i*,
 (ii) There are no *i*'s between ⊠₁ and ⊠₂ in the reading word of *T*,
 (iii) Deleting either ⊠₁ or ⊠₂ results in a ballot reading word.
- Which of the following are genomic tableaux?

- *K*-theoretic content: $\beta = (4, 2, 1)$
- Let K(γ^c/α; β) be the set of genomic tableaux of shape γ^c/α and K-theoretic content β. Then

$$K := k_{\alpha,\beta,\gamma}^{\boxplus} = |K(\gamma^{c}/\alpha;\beta)|.$$

Geometric connections to K-theory

Let η(S) be the number of connected components of S(ℝ), so η(S) = |orbits(ω)|. Then

$$\eta(S) \ge \chi(\mathcal{O}_S) \tag{1}$$

$$\eta(S) \equiv \chi(\mathcal{O}_S) \pmod{2} \tag{2}$$

Geometric connections to K-theory

• (Levinson.) Let $\eta(S)$ be the number of connected components of $S(\mathbb{R})$, so $\eta(S) = |\operatorname{orbits}(\omega)|$. Then

$$\eta(S) \geq \chi(\mathcal{O}_S) \tag{1}$$

$$\eta(S) \equiv \chi(\mathcal{O}_S) \pmod{2} \tag{2}$$

▶ Since $\chi(\mathcal{O}_S) = |\mathrm{LR}(\alpha, \Box, \beta, \gamma)| - K$, we have

$$K \ge |\text{LR}(\alpha, \Box, \beta, \gamma)| - |\text{orbits}(\omega)|$$
(3)
$$K \equiv \text{sign}(\omega) \pmod{2}$$
(4)

Geometric connections to K-theory

Let η(S) be the number of connected components of S(ℝ), so η(S) = |orbits(ω)|. Then

$$\eta(S) \geq \chi(\mathcal{O}_S) \tag{1}$$

$$\eta(S) \equiv \chi(\mathcal{O}_S) \pmod{2} \tag{2}$$

• Since $\chi(\mathcal{O}_S) = |\mathrm{LR}(\alpha,\Box,\beta,\gamma)| - K$, we have

$$\mathcal{K} \geq |\mathrm{LR}(\alpha, \Box, \beta, \gamma)| - |\mathrm{orbits}(\omega)|$$
 (3)

$$\mathcal{K} \equiv \operatorname{sign}(\omega) \pmod{2} \tag{4}$$

- ${\scriptstyle \bullet}$ Recall: esh consists of rectifying, shuffling, and un-rectifying.
- (G., Levinson.) Local rule, without rectifying: Start at i = 1.

- ▶ Recall: esh consists of rectifying, shuffling, and un-rectifying.
- (G., Levinson.) Local rule, without rectifying: Start at i = 1.
 - Phase 1. Switch ⊠ with the nearest *i prior* to it in reading order, if one exists. Increment *i* by 1 and repeat.

- ▶ Recall: esh consists of rectifying, shuffling, and un-rectifying.
- (G., Levinson.) Local rule, without rectifying: Start at i = 1.
 - Phase 1. Switch ⊠ with the nearest *i prior* to it in reading order, if one exists. Increment *i* by 1 and repeat.

- ▶ Recall: esh consists of rectifying, shuffling, and un-rectifying.
- (G., Levinson.) Local rule, without rectifying: Start at i = 1.
 - Phase 1. Switch ⊠ with the nearest *i prior* to it in reading order, if one exists. Increment *i* by 1 and repeat.

- ▶ Recall: esh consists of rectifying, shuffling, and un-rectifying.
- (G., Levinson.) Local rule, without rectifying: Start at i = 1.
 - Phase 1. Switch ⋈ with the nearest *i prior* to it in reading order, if one exists. Increment *i* by 1 and repeat.

If the \boxtimes precedes all of the *i*'s in reading order, go to Phase 2.

- ▶ Recall: esh consists of rectifying, shuffling, and un-rectifying.
- (G., Levinson.) Local rule, without rectifying: Start at i = 1.
 - ▶ Phase 1. Switch \boxtimes with the nearest *i* prior to it in reading order, if one exists. Increment *i* by 1 and repeat.

If the \boxtimes precedes all of the *i*'s in reading order, go to Phase 2.

▶ **Phase 2.** If the suffix from \boxtimes is not tied for (i, i + 1), switch \boxtimes with the nearest *i after it* in reading order. Repeat this process until the suffix becomes tied for (i, i + 1).

- ▶ Recall: esh consists of rectifying, shuffling, and un-rectifying.
- (G., Levinson.) Local rule, without rectifying: Start at i = 1.
 - ▶ Phase 1. Switch \boxtimes with the nearest *i* prior to it in reading order, if one exists. Increment *i* by 1 and repeat.

If the \boxtimes precedes all of the *i*'s in reading order, go to Phase 2.

▶ **Phase 2.** If the suffix from \boxtimes is not tied for (i, i + 1), switch \boxtimes with the nearest *i after it* in reading order. Repeat this process until the suffix becomes tied for (i, i + 1).

- ▶ Recall: esh consists of rectifying, shuffling, and un-rectifying.
- (G., Levinson.) Local rule, without rectifying: Start at i = 1.
 - ▶ Phase 1. Switch \boxtimes with the nearest *i* prior to it in reading order, if one exists. Increment *i* by 1 and repeat.

If the \boxtimes precedes all of the *i*'s in reading order, go to Phase 2.

▶ **Phase 2.** If the suffix from \boxtimes is not tied for (i, i + 1), switch \boxtimes with the nearest *i after it* in reading order. Repeat this process until the suffix becomes tied for (i, i + 1).

- ▶ Recall: esh consists of rectifying, shuffling, and un-rectifying.
- (G., Levinson.) Local rule, without rectifying: Start at i = 1.
 - ▶ Phase 1. Switch \boxtimes with the nearest *i* prior to it in reading order, if one exists. Increment *i* by 1 and repeat.

If the \boxtimes precedes all of the *i*'s in reading order, go to Phase 2.

▶ **Phase 2.** If the suffix from \boxtimes is not tied for (i, i + 1), switch \boxtimes with the nearest *i after it* in reading order. Repeat this process until the suffix becomes tied for (i, i + 1).

- ▶ Recall: esh consists of rectifying, shuffling, and un-rectifying.
- (G., Levinson.) Local rule, without rectifying: Start at i = 1.
 - ▶ Phase 1. Switch \boxtimes with the nearest *i* prior to it in reading order, if one exists. Increment *i* by 1 and repeat.

If the \boxtimes precedes all of the *i*'s in reading order, go to Phase 2.

▶ **Phase 2.** If the suffix from \boxtimes is not tied for (i, i + 1), switch \boxtimes with the nearest *i after it* in reading order. Repeat this process until the suffix becomes tied for (i, i + 1).

- First prove it directly for horizontal strips, $\beta = (m)$.
- "Pieri Case:" Moves downwards to next row cyclically.

Proof of Pieri Case:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof of Pieri Case:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof of Pieri Case:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof of Pieri Case:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof of Pieri Case:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

 General case: "Factor" the tableau into horizontal and vertical strips.

Switch the ⊠ with the first element prior to it in a horizontal strip (as in Pieri case) or with the next element after it in a vertical strip (conjugate of Pieri case).

 General case: "Factor" the tableau into horizontal and vertical strips.

Switch the ⊠ with the first element prior to it in a horizontal strip (as in Pieri case) or with the next element after it in a vertical strip (conjugate of Pieri case).

 General case: "Factor" the tableau into horizontal and vertical strips.

Switch the ⊠ with the first element prior to it in a horizontal strip (as in Pieri case) or with the next element after it in a vertical strip (conjugate of Pieri case).

 General case: "Factor" the tableau into horizontal and vertical strips.

Switch the ⊠ with the first element prior to it in a horizontal strip (as in Pieri case) or with the next element after it in a vertical strip (conjugate of Pieri case).

 General case: "Factor" the tableau into horizontal and vertical strips.

Switch the ⊠ with the first element prior to it in a horizontal strip (as in Pieri case) or with the next element after it in a vertical strip (conjugate of Pieri case).

 General case: "Factor" the tableau into horizontal and vertical strips.

Switch the ⊠ with the first element prior to it in a horizontal strip (as in Pieri case) or with the next element after it in a vertical strip (conjugate of Pieri case).

 General case: "Factor" the tableau into horizontal and vertical strips.

Switch the ⊠ with the first element prior to it in a horizontal strip (as in Pieri case) or with the next element after it in a vertical strip (conjugate of Pieri case).

 General case: "Factor" the tableau into horizontal and vertical strips.

Switch the ⊠ with the first element prior to it in a horizontal strip (as in Pieri case) or with the next element after it in a vertical strip (conjugate of Pieri case).

 General case: "Factor" the tableau into horizontal and vertical strips.

Switch the ⊠ with the first element prior to it in a horizontal strip (as in Pieri case) or with the next element after it in a vertical strip (conjugate of Pieri case).

 General case: "Factor" the tableau into horizontal and vertical strips.

Switch the ⊠ with the first element prior to it in a horizontal strip (as in Pieri case) or with the next element after it in a vertical strip (conjugate of Pieri case).
Proof of local rule

 General case: "Factor" the tableau into horizontal and vertical strips.

Switch the ⊠ with the first element prior to it in a horizontal strip (as in Pieri case) or with the next element after it in a vertical strip (conjugate of Pieri case).

Proof of local rule

 General case: "Factor" the tableau into horizontal and vertical strips.

Switch the ⊠ with the first element prior to it in a horizontal strip (as in Pieri case) or with the next element after it in a vertical strip (conjugate of Pieri case).

Proof of local rule

 General case: "Factor" the tableau into horizontal and vertical strips.

Switch the ⊠ with the first element prior to it in a horizontal strip (as in Pieri case) or with the next element after it in a vertical strip (conjugate of Pieri case).

Theorem (G., Levinson.) *We have two bijections:*

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 1}\}$ $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 2}\}$

Theorem (G., Levinson.) *We have two bijections:*

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 1}\}$ $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 2}\}$

Theorem (G., Levinson.) *We have two bijections:*

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 1}\}$ $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 2}\}$

Theorem (G., Levinson.) *We have two bijections:*

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 1}\}$ $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 2}\}$

Theorem (G., Levinson.) *We have two bijections:*

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 1}\}$ $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 2}\}$

Theorem (G., Levinson.) *We have two bijections:*

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 1}\}$ $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 2}\}$

Theorem (G., Levinson.) *We have two bijections:*

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 1}\}$ $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 2}\}$

Theorem (G., Levinson.) *We have two bijections:*

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 1}\}$ $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 2}\}$

Theorem (G., Levinson.) *We have two bijections:*

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 1}\}$ $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 2}\}$

Theorem (G., Levinson.) *We have two bijections:*

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 1}\}$ $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 2}\}$

Theorem (G., Levinson.) *We have two bijections:*

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 1}\}$ $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 2}\}$

Theorem (G., Levinson.) *We have two bijections:*

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 1}\}$ $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 2}\}$

Theorem (G., Levinson.) *We have two bijections:*

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 1}\}$ $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 2}\}$

Theorem (G., Levinson.) *We have two bijections:*

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 1}\}$ $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in some Phase 2}\}$

• We can now give a combinatorial proof of the relations $K \ge |\operatorname{LR}(\alpha, \Box, \beta, \gamma)| - |\operatorname{orbits}(\omega)|,$ $K \equiv \operatorname{sign}(\omega) \pmod{2}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ We can now give a combinatorial proof of the relations $\mathcal{K} \ge |\text{LR}(\alpha, \Box, \beta, \gamma)| - |\text{orbits}(\omega)|,$ $\mathcal{K} \equiv \text{sign}(\omega) \pmod{2}.$
- X_i set of tableaux arising in esh (or sh, equivalently) when the ⊠ is between the horizontal strips of (i - 1)'s and i's.
- e_i and s_i partial steps of esh and sh.

- ▶ We can now give a combinatorial proof of the relations $\mathcal{K} \ge |\text{LR}(\alpha, \Box, \beta, \gamma)| - |\text{orbits}(\omega)|,$ $\mathcal{K} \equiv \text{sign}(\omega) \pmod{2}.$
- X_i set of tableaux arising in esh (or sh, equivalently) when the ⊠ is between the horizontal strips of (i - 1)'s and i's.
- e_i and s_i partial steps of esh and sh.

• Partial monodromy operators: $\omega_i = (s_1 \cdots s_{i-1})(s_i \circ e_i)(s_{i-1}^{-1} \cdots s_1^{-1})$

- ▶ We can now give a combinatorial proof of the relations $\mathcal{K} \ge |\text{LR}(\alpha, \Box, \beta, \gamma)| - |\text{orbits}(\omega)|,$ $\mathcal{K} \equiv \text{sign}(\omega) \pmod{2}.$
- X_i set of tableaux arising in esh (or sh, equivalently) when the ⊠ is between the horizontal strips of (i - 1)'s and i's.
- e_i and s_i partial steps of esh and sh.

- Partial monodromy operators: $\omega_i = (s_1 \cdots s_{i-1})(s_i \circ e_i)(s_{i-1}^{-1} \cdots s_1^{-1})$
- Key Factorization:

$$\omega = \mathrm{sh} \circ \mathrm{esh} = (\mathbf{s}_1 \cdots \mathbf{s}_t) \circ (\mathbf{e}_t \cdots \mathbf{e}_1) = \omega_t \circ \cdots \circ \omega_2 \circ \omega_1.$$

Therefore $\operatorname{sign}(\omega) \equiv \sum \operatorname{sign}(\omega_i) \equiv \sum \operatorname{sign}(s_i \circ e_i) \pmod{2}$.

• We can now give a combinatorial proof of the relations $K \ge |LR(\alpha, \Box, \beta, \gamma)| - |orbits(\omega)|,$ $K \equiv sign(\omega) \pmod{2}.$

Theorem (G., Levinson.)

The cycles of $s_i \circ e_i$ are "mini-Pieri cases": all steps but one move the \boxtimes down one row in the strip of i's, and the last step returns it to the top of the cycle.

• We can now give a combinatorial proof of the relations

$$\begin{split} \mathcal{K} & \geqslant \quad |\mathrm{LR}(\alpha, \Box, \beta, \gamma)| - |\mathrm{orbits}(\omega)|, \\ \mathcal{K} & \equiv \quad \mathrm{sign}(\omega) \pmod{2}. \end{split}$$

Theorem (G., Levinson.)

The cycles of $s_i \circ e_i$ are "mini-Pieri cases": all steps but one move the \boxtimes down one row in the strip of i's, and the last step returns it to the top of the cycle.

An orbit O_i of s_i ∘ e_i generates |O_i| − 1 of the genomic tableaux in Phase 1. So

$$\mathcal{K} = \sum_i \left(\sum_{\mathcal{O}_i \in \mathrm{orbits}(\omega_i)} |\mathcal{O}_i| - 1
ight)$$

▶ We can now give a combinatorial proof of the relations $K \ge |\text{LR}(\alpha, \Box, \beta, \gamma)| - |\text{orbits}(\omega)|,$ $K \equiv \text{sign}(\omega) \pmod{2}.$

We have

$$\begin{split} \mathcal{K} &= \sum_{i} \left(\sum_{\mathcal{O}_{i} \in \operatorname{orbits}(\omega_{i})} |\mathcal{O}_{i}| - 1 \right) \\ &= \sum_{i} \operatorname{rlength}(\omega_{i}) \\ &\geqslant \operatorname{rlength}(\omega) \\ &= |\operatorname{LR}(\alpha, \Box, \beta, \gamma)| - |\operatorname{orbits}(\omega) \end{split}$$

Here $rlength(\pi)$ denotes the minimal number of transpositions (reflections) needed to generate π .

We can now give a combinatorial proof of the relations

$$\begin{split} \mathcal{K} &\geq |\mathrm{LR}(\alpha, \Box, \beta, \gamma)| - |\mathrm{orbits}(\omega)|, \\ \mathcal{K} &\equiv \mathrm{sign}(\omega) \pmod{2}. \end{split}$$

We have

$$\begin{split} \mathcal{K} &= \sum_{i} \left(\sum_{\mathcal{O}_i \in \operatorname{orbits}(\omega_i)} |\mathcal{O}_i| - 1 \right) \\ &\equiv \sum_{i} \left(\operatorname{sign}(\omega_i) \right) \equiv \operatorname{sign}(\omega) \pmod{2} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\begin{array}{ll} \blacktriangleright \mbox{ We can now give a combinatorial proof of the relations} \\ \mathcal{K} & \geqslant & |\mathrm{LR}(\alpha, \Box, \beta, \gamma)| - |\mathrm{orbits}(\omega)|, \end{array}$

 $K \equiv \operatorname{sign}(\omega) \pmod{2}.$

We have

$$\begin{split} \mathcal{K} &= \sum_{i} \left(\sum_{\mathcal{O}_i \in \operatorname{orbits}(\omega_i)} |\mathcal{O}_i| - 1 \right) \\ &\equiv \sum_{i} \left(\operatorname{sign}(\omega_i) \right) \equiv \operatorname{sign}(\omega) \pmod{2} \end{split}$$

"Elementary!"

• Recall that $K \ge |LR(\alpha, \Box, \beta, \gamma)| - |orbits(\omega)|$.

• Recall that $K \ge |LR(\alpha, \Box, \beta, \gamma)| - |orbits(\omega)|$.

Conjecture (G., Levinson.)

For each ω -orbit \mathcal{O} , there are at least $|\mathcal{O}| - 1$ genomic tableaux arising in each of Phase 1 and Phase 2 during the orbit.

• Recall that $K \ge |LR(\alpha, \Box, \beta, \gamma)| - |orbits(\omega)|$.

Conjecture (G., Levinson.)

For each ω -orbit \mathcal{O} , there are at least $|\mathcal{O}| - 1$ genomic tableaux arising in each of Phase 1 and Phase 2 during the orbit.

• Can prove the conjecture for β having two rows (for Phase 1).

• Recall that $K \ge |LR(\alpha, \Box, \beta, \gamma)| - |orbits(\omega)|$.

Conjecture (G., Levinson.)

For each ω -orbit \mathcal{O} , there are at least $|\mathcal{O}| - 1$ genomic tableaux arising in each of Phase 1 and Phase 2 during the orbit.

• Can prove the conjecture for β having two rows (for Phase 1).

• Recall that $K \ge |\operatorname{LR}(\alpha, \Box, \beta, \gamma)| - |\operatorname{orbits}(\omega)|$.

Conjecture (G., Levinson.)

For each ω -orbit \mathcal{O} , there are at least $|\mathcal{O}| - 1$ genomic tableaux arising in each of Phase 1 and Phase 2 during the orbit.

- Can prove the conjecture for β having two rows (for Phase 1).
- ► Equality holds when ω = id, implying that in this case S is a disjoint union of complex P¹'s.

• Recall that $K \ge |LR(\alpha, \Box, \beta, \gamma)| - |orbits(\omega)|$.

Conjecture (G., Levinson.)

For each ω -orbit \mathcal{O} , there are at least $|\mathcal{O}| - 1$ genomic tableaux arising in each of Phase 1 and Phase 2 during the orbit.

- Can prove the conjecture for β having two rows (for Phase 1).
- ► Equality holds when ω = id, implying that in this case S is a disjoint union of complex P¹'s.

When does equality hold in general?

Constructing high-genus Schubert curves

Arithmetic genus: If ω has exactly one orbit, it turns out that S is connected and integral, and the arithmetic genus is g(S) = 1 − χ(O_S) = K − |LR(α,□, β, γ)| + 1.

• Arbitrarily high genus: it suffices to find α, β, γ such that ω has exactly one orbit \mathcal{O} and $K \gg |\mathcal{O}| - 1$.

Constructing high-genus Schubert curves

- Arithmetic genus: If ω has exactly one orbit, it turns out that S is connected and integral, and the arithmetic genus is g(S) = 1 − χ(O_S) = K − |LR(α,□, β, γ)| + 1.
- Arbitrarily high genus: it suffices to find α, β, γ such that ω has exactly one orbit \mathcal{O} and $K \gg |\mathcal{O}| 1$.

"The case is one where we have been compelled to reason backward from effects to causes."

Constructing high-genus Schubert curves

- Arithmetic genus: If ω has exactly one orbit, it turns out that S is connected and integral, and the arithmetic genus is g(S) = 1 − χ(O_S) = K − |LR(α,□, β, γ)| + 1.
- Arbitrarily high genus: it suffices to find α, β, γ such that ω has exactly one orbit O and K ≫ |O| − 1.
- Let $t \ge 2$ be a positive integer. Let $\boxplus = (t+2)^{t+1}$ and set

$$\alpha = \gamma = (t, t - 1, t - 2, \dots, 2, 1);$$
 $\beta = (t + 1, 2, 1^{t-2})$

so γ^c/α is a *staircase-ribbon*. Then ω has one orbit, and the arithmetic genus of S is g(S) = (t-1)(t-2).

THANK YOU!
Proposition (G., Levinson.)

Let $T \in LR(\alpha, \Box, \beta, \gamma)$. We have $\omega(T) = T$ if and only if the computation of esh(T) consists only of vertical slides in Phase 1 and horizontal slides in Phase 2.

Thus no fixed point (orbit of length 1) can have genomic tableaux, and so the inequality is an equality for such orbits.

Corollary

Proposition (G., Levinson.)

Let $T \in LR(\alpha, \Box, \beta, \gamma)$. We have $\omega(T) = T$ if and only if the computation of esh(T) consists only of vertical slides in Phase 1 and horizontal slides in Phase 2.

Thus no fixed point (orbit of length 1) can have genomic tableaux, and so the inequality is an equality for such orbits.

Corollary

Proposition (G., Levinson.)

Let $T \in LR(\alpha, \Box, \beta, \gamma)$. We have $\omega(T) = T$ if and only if the computation of esh(T) consists only of vertical slides in Phase 1 and horizontal slides in Phase 2.

Thus no fixed point (orbit of length 1) can have genomic tableaux, and so the inequality is an equality for such orbits.

Corollary

Proposition (G., Levinson.)

Let $T \in LR(\alpha, \Box, \beta, \gamma)$. We have $\omega(T) = T$ if and only if the computation of esh(T) consists only of vertical slides in Phase 1 and horizontal slides in Phase 2.

Thus no fixed point (orbit of length 1) can have genomic tableaux, and so the inequality is an equality for such orbits.

Corollary

Proposition (G., Levinson.)

Let $T \in LR(\alpha, \Box, \beta, \gamma)$. We have $\omega(T) = T$ if and only if the computation of esh(T) consists only of vertical slides in Phase 1 and horizontal slides in Phase 2.

Thus no fixed point (orbit of length 1) can have genomic tableaux, and so the inequality is an equality for such orbits.

Corollary

Proposition (G., Levinson.)

Let $T \in LR(\alpha, \Box, \beta, \gamma)$. We have $\omega(T) = T$ if and only if the computation of esh(T) consists only of vertical slides in Phase 1 and horizontal slides in Phase 2.

Thus no fixed point (orbit of length 1) can have genomic tableaux, and so the inequality is an equality for such orbits.

Corollary

Proposition (G., Levinson.)

Let $T \in LR(\alpha, \Box, \beta, \gamma)$. We have $\omega(T) = T$ if and only if the computation of esh(T) consists only of vertical slides in Phase 1 and horizontal slides in Phase 2.

Thus no fixed point (orbit of length 1) can have genomic tableaux, and so the inequality is an equality for such orbits.

Corollary

Proposition (G., Levinson.)

Let $T \in LR(\alpha, \Box, \beta, \gamma)$. We have $\omega(T) = T$ if and only if the computation of esh(T) consists only of vertical slides in Phase 1 and horizontal slides in Phase 2.

Thus no fixed point (orbit of length 1) can have genomic tableaux, and so the inequality is an equality for such orbits.

Corollary

Proposition (G., Levinson.)

Let $T \in LR(\alpha, \Box, \beta, \gamma)$. We have $\omega(T) = T$ if and only if the computation of esh(T) consists only of vertical slides in Phase 1 and horizontal slides in Phase 2.

Thus no fixed point (orbit of length 1) can have genomic tableaux, and so the inequality is an equality for such orbits.

Corollary

Curves with arbitrarily many connected components: It suffices to find α, β, γ such that ω is the identity map and the set LR(α, □, β, γ) is arbitrarily large.

- Curves with arbitrarily many connected components: It suffices to find α , β , γ such that ω is the identity map and the set $LR(\alpha, \Box, \beta, \gamma)$ is arbitrarily large.
- Let $t \ge 2$ be a positive integer. Let $\boxplus = (t+1)^{t+1}$ and

$$\alpha = (t, t-1, \dots, 2); \quad \beta = (t, 1, 1); \quad \gamma = (t+1, t, \dots, 3, 2, 2)$$

Then ω acts as the identity on $LR(\alpha, \Box, \beta, \gamma)$, which has t - 1 elements, and so S is a disjoint union of t - 1 copies of \mathbb{P}^1 . For t = 4:

- Curves with arbitrarily many connected components: It suffices to find α , β , γ such that ω is the identity map and the set $LR(\alpha, \Box, \beta, \gamma)$ is arbitrarily large.
- Let $t \ge 2$ be a positive integer. Let $\boxplus = (t+1)^{t+1}$ and

$$\alpha = (t, t-1, \dots, 2); \quad \beta = (t, 1, 1); \quad \gamma = (t+1, t, \dots, 3, 2, 2)$$

Then ω acts as the identity on $LR(\alpha, \Box, \beta, \gamma)$, which has t - 1 elements, and so S is a disjoint union of t - 1 copies of \mathbb{P}^1 . For t = 4:

- Curves with arbitrarily many connected components: It suffices to find α , β , γ such that ω is the identity map and the set $LR(\alpha, \Box, \beta, \gamma)$ is arbitrarily large.
- Let $t \ge 2$ be a positive integer. Let $\boxplus = (t+1)^{t+1}$ and

$$\alpha = (t, t-1, \dots, 2); \quad \beta = (t, 1, 1); \quad \gamma = (t+1, t, \dots, 3, 2, 2)$$

Then ω acts as the identity on $LR(\alpha, \Box, \beta, \gamma)$, which has t - 1 elements, and so S is a disjoint union of t - 1 copies of \mathbb{P}^1 . For t = 4:

- Curves with arbitrarily many connected components: It suffices to find α , β , γ such that ω is the identity map and the set $LR(\alpha, \Box, \beta, \gamma)$ is arbitrarily large.
- Let $t \ge 2$ be a positive integer. Let $\boxplus = (t+1)^{t+1}$ and

$$\alpha = (t, t-1, \dots, 2); \quad \beta = (t, 1, 1); \quad \gamma = (t+1, t, \dots, 3, 2, 2)$$

Then ω acts as the identity on $LR(\alpha, \Box, \beta, \gamma)$, which has t - 1 elements, and so S is a disjoint union of t - 1 copies of \mathbb{P}^1 . For t = 4:

- Curves with arbitrarily many connected components: It suffices to find α , β , γ such that ω is the identity map and the set $LR(\alpha, \Box, \beta, \gamma)$ is arbitrarily large.
- Let $t \ge 2$ be a positive integer. Let $\boxplus = (t+1)^{t+1}$ and

$$\alpha = (t, t-1, \dots, 2); \quad \beta = (t, 1, 1); \quad \gamma = (t+1, t, \dots, 3, 2, 2)$$

Then ω acts as the identity on $LR(\alpha, \Box, \beta, \gamma)$, which has t - 1 elements, and so S is a disjoint union of t - 1 copies of \mathbb{P}^1 . For t = 4:

