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Classical stair climbing problems

How many ways can you climb a staircase with n stairs, taking
either 1 or 2 stairs at a time at each step?

Fibonacci: If an is total, a0 “ 0, a1 “ 1,

an “ an´1 ` an´2

for n ě 2.

Take up to k stairs at a time? If bn is number for n stairs:

bn “ bn´1 ` bn´2 ` ¨ ¨ ¨ ` bn´k
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Forwards and backwards steps

§ Take steps of at most k stairs up or down, stepping on every
stair exactly once, starting at stair 1 and ending at stair n?

§ Permutation π “ π1, . . . , πn of stairs 1, . . . , n is anchored if
π1 “ 1 and πn “ n.

§ k-bounded if |πi ´ πi`1| ď k for all i .

§ Let F
pkq
n be number of k-bounded anchored permutations of

n. Recursion for F
pkq
n ?
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The case k “ 2

§ F
p2q
n is number of ways to climb stairs with steps ˘1,˘2.

§ A step of `2 must be followed by ´1, `2, return to diagonal

§ Recursion:
F
p2q
n “ F

p2q
n´1 ` F

p2q
n´3

1 2 3 4 5 6 7 8
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The case k “ 3

Define Fn “ F
p3q
n .

§ Using generating functions:

Fn “ 2Fn´1 ´ Fn´2 ` 2Fn´3 ` Fn´4 ` Fn´5 ´ Fn´7 ´ Fn´8

§ Solved conjecture listed on OEIS! Screenshot from 2018:
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The case k “ 3: Proof

§ Joker: 31425, or any vertical translation thereof appearing
consecutively

1 2 3 4 5 6

1
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§ Lemma: (G.,M.,M.) At pi , iq after permutation of 1, 2, . . . , i :
up-step of `3 must be followed either by a Joker or by a
Cascading 3-pattern.
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The case k “ 3: Proof

§ Fn “ # 3-bounded anchored permutations of length n

§ Gn “ # 3-bounded permutations π with π1 “ 1 or π1 “ 2
and πn “ n

§ Hn “ # 3-bounded permutations π with π1 “ 3 and πn “ n
that do not begin with the Joker

§ System of recursions:

1. Fn “ Gn´1 ` Hn´1 ` Fn´5

2. Gn “ Fn ` Gn´2 ` Fn´3 ` Gn´4 ` Hn´2

3. Hn “ Fn´3 ` Gn´3 ` Fn´4 ` Gn´5 ` Hn´3

§ Set F pxq,G pxq,Hpxq to be generating functions of Fn,Gn,Hn.
Solve system of three equations:

F pxq “
x ´ x2 ´ x4

1´ 2x ` x2 ´ 2x3 ´ x4 ´ x5 ` x7 ` x8

Recursion follows. QED
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k ě 4?

§ Much more difficult!

§ Must a finite-depth linear recurrence relation always exist?

§ (G.,M.,M.) Answer: YES!

§ Transfer-matrix method: to show gen. function is rational

§ Finite directed graph: pV ,E q where E Ď V ˆ V

§ Adjacency matrix: For i , j P V , define Aij “

#

1 pi , jq P E

0 pi , jq R E

Theorem (Transfer-matrix.)

Let pijpnq “ # directed paths from i to j of length n. Then

8
ÿ

n“0

pijpnqx
n “

p´1qi`j detpI ´ xA; j , iq

detpI ´ xAq
P Cpxq

where detpB; j , iq is the minor with row j , column i deleted.
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Transfer-matrix method for non-anchored case

§ Avgustinovich and Kitaev: k-bounded permutations (not nec.
anchored) have rational generating functions for all k

§ Consecutive k-pattern: of π is a permutation of 1, 2, . . . , k
whose relative order matches πi`1, πi`2, . . . , πi`k for some i

§ Pattern graph Pk : nodes are k-patterns, edge τ Ñ σ iff
pattern of τ2, . . . , τk matches pattern of σ1, . . . , σk´1

§ k-determined permutation: determined by its path of
consecutive patterns in Pk

Example

has consecutive 3-patterns:

312, 132, 321
Path of 51432 in P3 is 312 Ñ 132 Ñ 321
Path of 52431 in P3 is 312 Ñ 132 Ñ 321, so not 3-determined
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Transfer-matrix method for non-anchored case

Theorem (Avgustinovich, Kitaev, 2008)

For any permutation π:

π is pk ` 1q-determined ô π´1 is k-bounded

ô π avoids all k-prohibited

patterns of length at most 2k ` 1

A k-prohibited pattern is of the form xX px ` 1q or px ` 1qXx
where |X | ě k .

Definition
P2k`1,k is the subgraph of P2k`1 on nodes that do not contain a
k-prohibited pattern.



Example: P5,2

12345

21345

12354

13245

12435

21354

23145

12534

32415 34251

15243 51423

43521

54132

45312

53421

54231

45321

45312

54321

(Paths of length n´ 4) ÐÑ (2-bounded permutations of length n)
p13245 Ñ 21354 Ñ 12435q ÐÑ 1324657 (inverse of 1324657)
p15243 Ñ 51423 Ñ 15243q ÐÑ 1726354 (inverse of 1357642)
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Lemma (G.,M.,M.)

An inverse k-bounded permutation π is anchored if and only if its
first consecutive pattern of length 2k ` 1 starts with 1 and its last
ends with 2k ` 1.



Anchored permutations as paths in P2k`1,k

Theorem (G.,M.,M.)

The anchored k-bounded permutations have a rational generating
function for all k .

By the Transfer-Matrix theorem:

F pkqpxq “
8
ÿ

n“0

F
pkq
n xn “

ppxq

detpI ´ xAq

where A is adjacency matrix of P2k`1,k , ppxq is some polynomial.
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Consequences

F pkqpxq “
8
ÿ

n“0

F
pkq
n xn “

ppxq

detpI ´ xAq

§ A finite-depth linear recurrence for F
pkq
n exists for all k!

§ Let tαiu be eigenvalues of A with multiplicities tdiu.
Characteristic poly detpxI ´ Aq factors as

ś

i px ´ αi q
di , so

detpI ´ xAq “
ź

i

p1´ αixq
di

§ Use partial fractions and expand the generating function:

F
pkq
n “

ÿ

i

pi pnqα
n
i

for some polynomials pi pnq of degree at most di ´ 1.
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What are the eigenvalues?

Theorem (Frobenius)

If digraph is strongly connected, eigenvalues of adjacency matrix
are bounded above by the max outdegree of any vertex.Lemma (G.,M.,M.)

All paths in P2k`1,k that correspond to anchored permutations lie
in the strongly connected component P 12k`1,k of the identity.
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Asymptotics

Theorem (Perron-Frobenius)

For an adjacency matrix A of a strongly connected digraph having
at least one loop, there is a unique eigenvalue r of maximal
absolute value, r has multiplicity 1, and r is a positive real number.

Corollary

For some constant c and polynomials pi ,

F
pkq
n “ c ¨ rn `

ÿ

αi‰r

pi pnqα
n
i ,

where |αi | ă r for all other eigenvalues αi . Hence F pkqpnq is Oprnq
(asymptotically bounded above by crn for some c.)

Theorem (G.,M.,M.)

We have that F
pkq
n is Opknq.

Proof: Maximum outdegree in P 12k`1,k is k.
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Asymptotics: Sanity check

Theorem (G.,M.,M.)

We have that F
pkq
n is Opknq.

§ k “ 2: largest root of x3 ´ x2 ´ 1 is approximately

r « 1.466 ă 2

so F
p2q
n is Op2nq.

§ k “ 3: largest root of x8´ 2x7` x6´ 2x5´ x4´ x3` x ` 1 is

r « 2.114 ă 3

so F
p3q
n is Op3nq.
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Summary

1. How many ways to climb n stairs with steps of size
˘1,˘2,˘3? Satisfies recursion

Fn “ 2Fn´1 ´ Fn´2 ` 2Fn´3 ` Fn´4 ` Fn´5 ´ Fn´7 ´ Fn´8

2. By showing that the generating functions are rational: such a
recurrence exists for steps ˘1,˘2, . . . ,˘k for all k.

3. Stair climbs correspond to paths in a certain strongly
connected component of a pattern overlap graph.

4. Number of stair climbs for k is asymptotically bounded above
by c ¨ kn for some constant c.
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Thank You!


