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Motivation: Schubert curves
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» Grassmannian: Gr(k, n) is the set of all k-planes in n-space

» Monodromy of real Schubert curves in Gr(k,n) over RP!
described by “jeu de taquin” operations (Speyer, 2012)

v

Simplified using crystal operators E;, F; (G., Levinson, 2015)
» Key fact: E;, F; commute with jeu de taquin



Motivation: Type B Schubert curves

» Real Schubert curves in Orthogonal grassmannian
OG(n,2n + 1) described by shifted Young tableaux (Purbhoo;
G., Levinson, Purbhoo)

» Question: Are there “crystal” operators on shifted tableaux
that commute with shifted jeu de taquin?



Outline

Part 1: Ordinary tableau crystals
(known)

Part 2: Combinatorial “Crystals” for
shifted tableaux (new!)



Tableaux and Schur functions

» Skew shape: \/u (below, A = (5,3,3) and p = (2,1))

» Semistandard Young tableau (SSYT): Entries increasing
down columns, weakly increasing across rows

1[3]3]
22
1]3]4




Tableaux and Schur functions

» Skew shape: \/u (below, A = (5,3,3) and p = (2,1))

» Semistandard Young tableau (SSYT): Entries increasing
down columns, weakly increasing across rows
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» Reading word: concatenate rows, bottom up (13422133)

» Weight: wt(T) = (m1, ma,...) where m; is the number of i's
in T. Weight is (2,2,3,1) above.
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> Schur function: sy, (x1,%2,...) = XressyT(\/p) xT

_ ym m m3
_Xl X2 X3 .



Tableaux and Schur functions

» Skew shape: \/u (below, A = (5,3,3) and p = (2,1))

» Semistandard Young tableau (SSYT): Entries increasing
down columns, weakly increasing across rows

1[3]3]
2|2
11]3]4

» Reading word: concatenate rows, bottom up (13422133)

» Weight: wt(T) = (m1, ma,...) where m; is the number of i's
in T. Weight is (2,2,3,1) above.

» Character: x'

> Schur function: sy, (x1,%2,...) = XressyT(\/p) xT

» Schur functions are symmetric in x; variables.

_ ym m m3
_Xl X2 X3 .



Crystal structure on tableaux
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Type A Crystals

» Arise from representation theory of Lie algebras.
Example: sl = {M € Mat(2) : tr(M) = 0} generated by:
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for 1 < i< n, and a map wt : B — Z"*1 such that:
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=(00) (1) (0 %)
» Type A, Crystal: A set B along with operators

e, fi: B—>Bu{g}, gi,pi B—>1Z

for 1 < i< n, and a map wt : B — Z"*1 such that:
(1) If X,Y € B then ¢(X) = Y iff f(Y) = X. In this case,

gi(Y)=e(X) =1, @i(Y)=wpi(X)+1

and wt(Y) = wt(X) + (0'-1,1,—1,0"")



Type A Crystals

» Arise from representation theory of Lie algebras.
Example: sl = {M € Mat(2) : tr(M) = 0} generated by:

01 00 1 0
=(00) (1) (0 %)
» Type A, Crystal: A set B along with operators

e, fi: B—>Bu{g}, gi,pi B—>1Z

for 1 < i< n, and a map wt : B — Z"*1 such that:
(1) If X,Y € B then ¢(X) = Y iff f(Y) = X. In this case,
eil(Y)=e(X) =1,  ¢i(Y)=pi(X)+1

and wt(Y) = wt(X) + (0'-1,1,—1,0"")
(2) Foranyiandany X € B, p;j(X)—ei(X) = wt(X); — wt(X);t1.
(Often ¢;(X) = number of f; steps that can be applied to X.)



Defining Tableaux crystals: Jeu de Taquin slides

» Inner slide:
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Defining Tableaux crystals: Jeu de Taquin slides
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» Rectification: Sequence of jeu de taquin slides leading to a
straight shape tableau rect(T).
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» Rectification: Sequence of jeu de taquin slides leading to a
straight shape tableau rect(T).
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Defining Tableaux crystals: Jeu de Taquin slides

» Quter slide:

23]3]

BEE

» Rectification: Sequence of jeu de taquin slides leading to a
straight shape tableau rect(T).

» T is highest weight if rect(T) is highest weight for its shape:
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Tableaux crystal structure

» Straight shape SSYT's of shape (5, 3) with entries 1,2:
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Tableaux crystal structure

» Straight shape SSYT's of shape (5, 3) with entries 1,2:

F F
Ty iy [papaire) Sy [araaee] e
V= RRR <5 RRRE <5 RRD

» F1 changes last 1 to 2 if possible, maps to @ otherwise. E;
changes first 2 in top row to 1 if possible, maps to @
otherwise.



Tableaux crystal structure

» Straight shape SSYT's of shape (5, 3) with entries 1,2:

F F
Ty iy [papaire) Sy [araaee] e
V= RRR <5 RRRE <5 RRD

» F1 changes last 1 to 2 if possible, maps to @ otherwise. E;
changes first 2 in top row to 1 if possible, maps to @
otherwise.

» Outer slides to get maps Fi, E; on skew tableaux:

F F
iy . [Aapael L [aan
D= O] <5 ORREI <% R2RRE




Tableaux crystal structure

» Local rule for skew shapes: In reading word, substitute
2 ='("and 1 =')', match parentheses.
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» F1 changes the rightmost unmatched 1 to 2 if it exists.
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Tableaux crystal structure

» Local rule for skew shapes: In reading word, substitute
2 ='("and 1 =')', match parentheses.

1]
1]2]2
L|1]1]1]2
2]2
22111121221
cC)y)yoy)y ) )

» F1 changes the rightmost unmatched 1 to 2 if it exists.
» E; changes the leftmost unmatched 2 to 1 if it exists.
» Map to @ otherwise

» Coplactic: E;, F; commute with all JDT slides



Operators E; and F; for general i

» E; and F; defined similarly on the subword or subtableau of
letters i, i + 1.
Example
F>(1221332) = 1231332:
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Operators E; and F; for general i

» E; and F; defined similarly on the subword or subtableau of
letters /,i + 1.
Example
F>(1221332) = 1231332:

1

~ N
—~ W
~— N

» Highest weight <= killed by all E;'s (top of crystal graph).
» Skew Littlewood-Richardson Rule:

A
S\ = Z CpSv
v

where c;‘l, is the number of highest weight tableaux of shape
A/ and weight v.
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Alternately: Stembridge's axiomatic description

View crystal as a Z"-weighted, edge-labeled (by 1,...,n—1)
directed graph G. Arrow labeled / is f;.

Basic structure:
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Set ¢j(w) = #ej-steps available starting from w,
pi(w) = #fi-steps.



Alternately: Stembridge's axiomatic description

View crystal as a Z"-weighted, edge-labeled (by 1,...,n—1)
directed graph G. Arrow labeled / is f;.

Basic structure:

Axiom.

Axiom.

Axiom.

Following an edge w " x lowers the weight:
wt(x) —wt(w) =a; = (0...,-1,1,...0).

For each i, the i- connected components are strings:
® —) ® —) [ ] —) o —) ® —) ®

Set ¢j(w) = #ej-steps available starting from w,
pi(w) = #fi-steps.

For |i — j| > 1: edges commute:



Length axiom

Axiom. Suppose w-=Lx. Then the i-strings passing through w and x
are related in one of the following two ways:

N
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Length axiom

Axiom. Suppose w-=Lx. Then the i-strings passing through w and x
are related in one of the following two ways:

N
A

(€i(w) = €i(x), pi(w) = ¢i(x)) = (0,=1) or (1,0).



: . i i+1
Axioms relating arrows —, —

. i i+1
Axiom. Suppose w — x and w——y. Compare ¢ values:

A=(gir1(w) —eir1(x),ei(w) —€i(y))
=(1,1),(1,0),(0,1) or (0,0).
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Also: dual versions of same axioms (for going backwards).
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A=(gir1(w) —eir1(x),ei(w) —€i(y))
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Also: dual versions of same axioms (for going backwards).



Stembridge axioms

Theorem (Stembridge '03)
Let G be a finite connected graph satisfying the local axioms.

Then G has a unique highest-weight element g*, with wt(g*) = A
a partition, and canonically G = SSYT (A, n).
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Let G be a finite connected graph satisfying the local axioms.

Then G has a unique highest-weight element g*, with wt(g*) = A
a partition, and canonically G = SSYT (A, n).

» Corollary (without ‘connected’ hypothesis):
Weight generating function of G is Schur-positive!

(each connected component <> some SSYT (A, n)).



Stembridge axioms

Theorem (Stembridge '03)
Let G be a finite connected graph satisfying the local axioms.

Then G has a unique highest-weight element g*, with wt(g*) = A
a partition, and canonically G = SSYT (A, n).

» Corollary (without ‘connected’ hypothesis):
Weight generating function of G is Schur-positive!

(each connected component <> some SSYT (A, n)).

» Morse-Schilling (2015): Crystal-theoretic proof of Schur
positivity for Stanley symmetric functions



Part 2: Shifted tableaux

» Shifted partitions: Partitions with distinct parts; ith row
shifted to the right / steps.

A=(6,4,2,1)
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letters can only repeat in columns and unprimed only in rows.
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Part 2: Shifted tableaux

» Jeu de Taquin: (Sagan, Worley.) Primed letters lose their
primes when sliding into the diagonal.
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» Jeu de Taquin: (Sagan, Worley.) Primed letters lose their
primes when sliding into the diagonal.
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Part 2: Shifted tableaux

» Jeu de Taquin: (Sagan, Worley.) Primed letters lose their
primes when sliding into the diagonal.

| [1]2
[1]1]1]2
3
» Skew shape: \/u
» Semistandard tableau: 1' <1 <2 <2<3 <3<---is

alphabet, entries weakly increasing down and right. Primed
letters can only repeat in columns and unprimed only in rows.

» Canonical form: Southwest-most i or i’ is always unprimed.



Schur Q-functions (Hall-Littlewood, Stembridge,...)
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Schur Q-functions (Hall-Littlewood, Stembridge,...)

11112
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1/
[1]1
3]

1L

» Weight: wt(T) = (my, mp,...) where m; is the number of |
and /" entries. Above, (5,2,1).

» Highest weight: JDT rectification has weight equal to shape

» Character: x7 = 2/T)x™x™ ... where £(T) is the number
of nonzero entries in wt(T). Above, x” = 8xPx3x3.

» Schur Q-functions:

Qu/plx, x2,...) = Z x

TeShST(M\/ 1)



Operators E;, F;, E/, F/ (G., Levinson, Purbhoo.)

» Consider i = 1 as before. Restrict to alphabet {1’,1,2' 2}.
Shape can have two rows:
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» Consider i = 1 as before. Restrict to alphabet {1’,1,2' 2}.
Shape can have two rows:
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Operators E;, F;, E/, F/ (G., Levinson, Purbhoo.)

» Consider i = 1 as before. Restrict to alphabet {1’,1,2' 2}.

Shape can have two rows:

[ Tr]if2]  m [ Ji]1]2]
P 1]2 2|2 e H
EIE 1\/ S el 22
1]2 2
n ORI 7
12 P 2
Or one row:
CIfaf] / [ ]af2] / [ ]2]2] / [ ]1]2]2] /[ [2]2]2] A
1 = 1 <= 1 =+ |2 = =0
* o o o A I

» Extend to skew shapes by applying outer slides.

» Theorem. (G., Levinson, Purbhoo, 2016.) There are local,
fast (O(n)) combinatorial rules for these operators that do
not require JDT, similar to parentheses rule for ordinary
tableaux. (arxiv:1706.09969)
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Crystal-like structure
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Crystal-like structure

» “Crystal graph” for i =1, 2:

FFl P F

» Results:

» Graph structure implies
Q) is symmetric.

» T is highest weight iff
Ei(T)=E/(T) = for
all /.

» Connected components
have unique highest
weights

» Gives LR decomposition

Q)\/;L = Zy fu/\qu"
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Axioms for shifted tableau crystals

G = Z"-weighted digraph, edge labels {1',1,...,n—1' n—1}.

Basic structure:

Axiom.

Axiom.

Axiom.

Following an edge w Tor 7,y lowers the weight:

wt(x) —wt(w) =a; = (0...,-1,1...0).

For |i —j| > 1, all i,j, i, )" edges commute.

The {i, i'}-connected components are doubled strings:

~ ~ ~ - -
-~ -~ -~

or

(iff wt; = 0 at bottom)

Set ¢;(w), p;(w) = total # steps to top, bottom
Also !, ¢! (#{--»} only) and &;, §; (#{—} only).
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. i+1 or i+l’
Axiom. Suppose w ———— x. Then

(eilw) —€i(x), pi(w) — pi(x)) = (0, 1) or (1,0).

Same two possibilities as Stembridge:




. lorl  2or2
Relations between :

lorl 2 or 2/
Suppose we have two edges: w X, W

Define: A = (e2(w) —e2(x),e1(w) —1(y))
=(1,1),(1,0),(0,1) or (0,0).
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Relations between

lorl 2 or 2/
Suppose we have two edges: w X, W y

Define: A = (e2(w) —e2(x),e1(w) —e1(y))
= (1,1),(1,0),(0,1) or (0,0).
Axioms. For {f{,f;}, {f, £}, {f{, 2} (assume f, # £)):

Conditions Axiom Conditions Axiom

Note: No axiom for {fi, f;} when &;(w) = 0!
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. 1 2
Relations between —, —
The interesting case: w#x, wi>y.

Observation. By applying previous axioms, reduce to case where
f{ (--») not defined.

Then, the axioms for {fi, 2} resemble Stembridge axioms!



. 1 2
Relations between —, —
Assume f{ is not defined at w, and £, # fj (‘strict’ solid edge).

Axioms for {f1, fr}:

Conditions Axiom Conditions Axiom
A =(0,1), (1,0) A=(11) /\s
\v/
A = (0,0), A =1(0,0
p1(fa(w)) =2 P1(h(w)) <2 >




Uniqueness of shifted tableau crystals

Theorem (G., Levinson)

Let G be a finite connected graph satisfying these local axioms.

» G has a unique maximal element g*, and wt(g*) = o is a
strict partition.

» There is a canonical isomorphism ShSYT (o, n) — G.

In particular, the generating function

Z 2t(wt(g)) , wi(e)
geG

is Schur Q positive.



Application: Type B Schubert curves

» Zero fiber labeled by tableaux of a skew shifted shape
consisting of a marked inner corner (‘x") and a highest weight
tableau of a fixed weight v.



The monodromy operator (G., Levinson, Purbhoo)

» Monodromy operator w is given by commutator of rectification
with jeu de taquin (based on work of Levinson, Speyer):
1. Rectify, with x]=0
2. Slide the [x] to an outer corner with an outer JDT slide
3. Unrectify to the original shape, with [x] = o0
4. Slide the [x] back to an inner corner
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» Monodromy operator w is given by commutator of rectification
with jeu de taquin (based on work of Levinson, Speyer):
1. Rectify, with x]=0
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» Monodromy operator w is given by commutator of rectification
with jeu de taquin (based on work of Levinson, Speyer):
1. Rectify, with x]=0
2. Slide the [x] to an outer corner with an outer JDT slide
3. Unrectify to the original shape, with [x] = o0
4. Slide the [x] back to an inner corner

1 | 1|1
2/ | X 2/

E

|l\D|—*X

1
2]




The monodromy operator (G., Levinson, Purbhoo)

» Monodromy operator w is given by commutator of rectification
with jeu de taquin (based on work of Levinson, Speyer):
1. Rectify, with x]=0
2. Slide the [x] to an outer corner with an outer JDT slide
3. Unrectify to the original shape, with [x] = o0
4. Slide the [x] back to an inner corner
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A new local algorithm (G., Levinson, Purbhoo)

» Local rule for steps 1 — 3, without rectifying:
» Phase 1. Switch [X] with the nearest 1’ after it in reading
order, if one exists, and then with the nearest 1 before it in

reading order. Do the same for 2’ and 2, and so on until there
is no i’ after it for some i.
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» Local rule for steps 1 — 3, without rectifying:

» Phase 1. Switch [X] with the nearest 1’ after it in reading
order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 2’ and 2, and so on until there
is no i’ after it for some . At this point go to Phase 2.

» Phase 2. Replace the [x] with i’ and apply F;, Fiy1,... in that
order until only one entry is changing. Then replace that entry

with [X.
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» Local rule for steps 1 — 3, without rectifying:

» Phase 1. Switch [X] with the nearest 1’ after it in reading
order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 2’ and 2, and so on until there
is no i’ after it for some . At this point go to Phase 2.

» Phase 2. Replace the [x] with i’ and apply F;, Fiy1,... in that
order until only one entry is changing. Then replace that entry

with [X.
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A new local algorithm (G., Levinson, Purbhoo)

» Local rule for steps 1 — 3, without rectifying:

» Phase 1. Switch [X] with the nearest 1’ after it in reading
order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 2’ and 2, and so on until there
is no i’ after it for some . At this point go to Phase 2.

» Phase 2. Replace the [x] with i’ and apply F;, Fiy1,... in that
order until only one entry is changing. Then replace that entry
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A new local algorithm (G., Levinson, Purbhoo)

» Local rule for steps 1 — 3, without rectifying:

» Phase 1. Switch [X] with the nearest 1’ after it in reading
order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 2’ and 2, and so on until there
is no i’ after it for some . At this point go to Phase 2.

» Phase 2. Replace the [x] with i’ and apply F;, Fiy1,... in that
order until only one entry is changing. Then replace that entry

with [X.
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Future

work

Morse-Schilling approach to Schur Q-positivity of type B
Stanley symmetric functions using the local axioms?

Type A crystals correspond to representations of sl,.
Representation theory for these crystals? Relation to quantum
queer superalgebra crystals of Grantcharov et. al?

Geometry of type B Schubert curves (monodromy operator
now understood in terms of crystal-like operators).



THANK YOU!



