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Shifted tableaux

� Shifted partitions: Partitions with distinct parts; ith row
shifted to the right i steps.

λ = (6, 4, 2, 1)

� Skew shape: λ{µ

� Semistandard tableaux: 11   1   21   2   31   3   � � � is
alphabet, entries weakly increasing down and right. Primed
letters can only repeat in columns and unprimed only in rows.

� Canonical form: First i or i 1 is always unprimed in reading
order (read rows from bottom to top, 31111211121).
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Shifted tableaux

� Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.
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� Highest weight: Rectifies to shifted tableau with all i ’s in ith
row:

1 1 1 1 1

2 2

3
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Standardization

� Standardization order: Break ties by reading order for
unprimed entries, reverse reading order for primed entries
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� Weight: wtpT q � pm1,m2, . . .q where mi is the total number
of i and i 1 entries in T . Above, weight is p5, 2, 1q.

� Monomial weight: xwtpT q � xm1
1 xm2

2 � � � . Above, x51x
2
2x3.
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Shifted Littlewood-Richardson Rule

� Schur Q-functions: Let `pwtT q be the number of nonzero
entries in wtT .

Qλ{µpx1, x2, . . .q �
¸

TPShSTpλ{µq

2`pwtT qxwtT

� Shifted Littlewood-Richardson rule:

Qλ{µ �
¸

f λµνQν

where f λµν is the number of highest weight canonical shifted
semistandard tableaux of shape λ{µ and weight ν.

� Question: Can we detect these highest weight skew shifted
tableaux with crystal-like raising operators?

(Main result:
yes!)
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Straight shapes, two letters

� Restrict to alphabet t11, 1, 21, 2u. Shape can have two rows:
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F ′
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1 F ′
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� Need two operators F1, F 1
1 and their partial inverses E1, E 1

1.

� Coplacticity: Extend to skew shapes by applying outer slides.

� General operators: Fi , F
1
i , Ei , E

1
i act on the strip of

i 1, i , pi � 1q1, i � 1 letters, by JDT rectifying, applying the
appropriate operator, and unrectifying.

� Highest weight iff killed by all raising operators Ei ,E
1
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Crystal-like structure

� “Crystal graph” for i � 1, 2:

F1 F 1
1 F2 F 1

2

� Characters are Schur
Q-functions:

¸

T in crystal

2`pwtpT qqxwtT � Qλ

Graph structure implies Qλ
is symmetric.

� Connected components for
skew shapes give LR rule for
Qλ{µ.
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Lattice walks of words

� Walk of w � w1w2 � � �wn P t1
1, 1, 21, 2un is a lattice walk in

first quadrant from px0, y0q � p0, 0q to pxn, ynq, with wi

labeling the step pxi , yi q Ñ pxi�1, yi�1q. Directions:

11
ÝÝÑ

1
ÝÝÑ

��21
��2 if xiyi � 0

11
ÝÝÑ

��1 21
ÐÝÝ

��2 if xiyi � 0

� Example: The walk of 12221111122 looks like:

1

2

2

21

1 11

12

2



Properties of lattice walks (G., Levinson, Purbhoo)

� Rectification: Endpoint pxn, ynq tells much about rectpwq:

� Shape is ppn � xn � ynq{2, pn � xn � ynq{2q.
� Weight is ppn � xn � ynq{2, pn � xn � ynq{2q.

1

2

2

21

1 11

12

2

1 1 1 1 2 2 2
2 2

� Highest weight: A word w with letters in t11, 1, 21, 2u has
E1pwq � E 1

1pwq � ∅ iff its walk ends on the x-axis.

� Proofs via Knuth equivalence: An elementary shifted Knuth
move (Sagan, Worley) does not change the endpoint of the
walk.
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The operation F1 on words

� Let w P t11, 1, 21, 2un. An F-critical substring of w is a
substring of any of the types and locations below.

Type Substring Starting Location Transformation

1F 1p11q�21 y � 0 or y � 1, x ¥ 1 21p11q�2

2F 1p2q�11 x � 0 or x � 1, y ¥ 1 21p2q�1

3F 1 y � 0 2

4F 11 x � 0 21

5F 1 or 21 x � 1, y ¥ 1 ∅

� Final substring is the F-critical substring wi � � �wj with
largest j .

� F1pwq: Replace wi � � �wj with its transformation.

� If no F -critical substrings, F1pwq � ∅.
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� Let w P t11, 1, 21, 2un. An F-critical substring of w is a
substring of any of the types and locations below.

Type Substring Starting Location Transformation

1F 1p11q�21 y � 0 or y � 1, x ¥ 1 21p11q�2

2F 1p2q�11 x � 0 or x � 1, y ¥ 1 21p2q�1

3F 1 y � 0 2

4F 11 x � 0 21

5F 1 or 21 x � 1, y ¥ 1 ∅

� Final substring is the F-critical substring wi � � �wj with
largest j .

� F1pwq: Replace wi � � �wj with its transformation.

� If no F -critical substrings, F1pwq � ∅.



Example
Type Substring Starting Location Transformation

1F 1p11q�21 y � 0 or y � 1, x ¥ 1 21p11q�2

2F 1p2q�11 x � 0 or x � 1, y ¥ 1 21p2q�1

3F 1 y � 0 2

4F 11 x � 0 21

5F 1 or 21 x � 1, y ¥ 1 ∅

The word w � 12221111122 has a type 2F substring at 111, and
this is its final F -critical substring. Thus F1pwq � 12221211122.

1

2

2

21

1 11

12

2

F1ÝÑ

1

2

2

21
21

1
12

2



The operation E1 on words

� Let w P t11, 1, 21, 2un. An E-critical substring of w is a
substring of any of the types and locations below.

Type Substring Starting Location Transformation

1E 21p2q�1 x � 0 or x � 1, y ¥ 1 1p2q�11

2E 21p11q�2 y � 0 or y � 1, x ¥ 1 1p11q�21

3E 21 y � 0 11

4E 2 x � 0 1

5E 1 or 21 y � 1, x ¥ 1 ∅

� Final substring is the E-critical substring wi � � �wj with
largest i , breaking ties by largest j .

� E1pwq defined by applying the appropriate transformation to
the final E -critical substring of w .

� If there are no E -critical substrings we define E1pwq � ∅.



Properties of E1 and F1 (G., Levinson, Purbhoo.)

Theorem. The operators E1 and F1 are:

� Defined on tableaux: Applying E1 or F1 to the reading word
of a skew shifted semistandard tableau preserves
semistandardness of the entries.

� Agree with diagram on straight shapes:

2

1 1 1 1
2

1 1 1 2

2

1 1 2 2

2

1 1 1 2′

2

1 1 2′ 2
2

1 2′ 2 2
F1

F1

F1

F1F ′
1

F ′
1

F ′
1

� Coplactic: E1 and F1 commute with all sequences of inner or
outer JDT slides. (Difficult!)

� Partial inverses: E1pT q � T 1 if and only if F1pT
1q � T .



Primed operators E 1
1 and F 1

1

� E 1
1pwq is defined by changing the last 21 in w to a 1 if this

does not change the standardization. Otherwise E 1
1pwq � ∅.

� F 1
1pwq is defined by changing the last 1 in w to a 21 if this

does not change the standardization. Otherwise F 1
1pwq � ∅.

� Two maximal F 1
1 chains:

122111
F 1

1ÝÑ 1222111
F 1

1ÝÑ ∅

1111111
F 1

1ÝÑ 1121111
F 1

1ÝÑ 1221111
F 1

1ÝÑ 222111
F 1

1ÝÑ 222211
F 1

1ÝÑ 2222121
F 1

1ÝÑ ∅

� Theorem. The operations E 1
1 and F 1

1 are:
� Coplactic and well-defined on skew shifted tableaux.
� Partial inverses: if E 1

1pT q � T 1 then F 1

1pT
1q � T .

� Have chains of length 2 unless the rectification shape has one
row; in the latter case they coincide with E1 and F1.
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Properties

� E 1
1,E1,F

1
1,F1 all commute with each other.

� E1 and E 1
1 move the endpoint of the walk by p1,�1q, F1 and

F 1
1 by p�1, 1q. Example of repeated F1 followed by one F 1

1:
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Properties

� E 1
1,E1,F

1
1,F1 all commute with each other.

� E1 and E 1
1 move the endpoint of the walk by p1,�1q, F1 and

F 1
1 by p�1, 1q. Example of repeated F1 followed by one F 1

1:
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Application: Type B Schubert curves

� Orthogonal Grassmannian OGp2n � 1, nq: the type B
analog of Grpn, kq

� Can be defined as the variety of n-dimensional isotropic
(self-orthogonal) subspaces V of C2n�1 with respect to the
symmetric inner form xpai q, pbjqy �

°
aib2n�1�i .

� Schubert varieties ΩλpFq defined for shifted partitions λ in
the n � n staircase.

� Schubert curves: certain 1-dimensional intersections of
Schubert varieties
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Application: Type B Schubert curves

� Orthogonal Grassmannian OGp2n � 1, nq: the type B
analog of Grpn, kq

� Can be defined as the variety of n-dimensional isotropic
(self-orthogonal) subspaces V of C2n�1 with respect to the
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°
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Schubert curves in the Orthogonal Grassmannian

� Real Schubert curves have a natural smooth covering of RP1,
monodromy operator given by a certain operation on highest
weight skew tableau with a marked inner corner:

3

1′ 1 1
× 1′ 2′

1 2

� Monodromy operator:

1. Rectify, with b � 0
2. Slide the b to an outer corner with an outer JDT slide
3. Unrectify to the original shape, with b � 8
4. Slide the b back to an inner corner

� Operators Fi ,F
1
i give us a new easier rule that avoids

rectification!
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Schubert curves in the Orthogonal Grassmannian

� Real Schubert curves have a natural smooth covering of RP1,
monodromy operator given by a certain operation on highest
weight skew tableau with a marked inner corner:

3

1′ 1 1
× 1′ 2′

1 2

� Monodromy operator:

1. Rectify, with b � 0
2. Slide the b to an outer corner with an outer JDT slide
3. Unrectify to the original shape, with b � 8
4. Slide the b back to an inner corner

� Operators Fi ,F
1
i give us a new easier rule that avoids

rectification!



Thank You!



Local rule (G., J. Levinson and K. Purbhoo)

� Local rule for steps 1 � 3, without rectifying:
� Phase 1. Switch b with the nearest 11 after it in reading

order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 21 and 2, and so on until there
is no i 1 after it for some i .

At this point go to Phase 2.
� Phase 2. Replace the b with i 1 and apply Fi ,Fi�1, . . . in that

order until only one entry is changing. Then replace that entry
with b.

3

1′ 1 1
× 1′ 2′

1 2



Local rule (G., J. Levinson and K. Purbhoo)

� Local rule for steps 1 � 3, without rectifying:
� Phase 1. Switch b with the nearest 11 after it in reading

order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 21 and 2, and so on until there
is no i 1 after it for some i .

At this point go to Phase 2.
� Phase 2. Replace the b with i 1 and apply Fi ,Fi�1, . . . in that

order until only one entry is changing. Then replace that entry
with b.
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Local rule (G., J. Levinson and K. Purbhoo)

� Local rule for steps 1 � 3, without rectifying:
� Phase 1. Switch b with the nearest 11 after it in reading

order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 21 and 2, and so on until there
is no i 1 after it for some i .

At this point go to Phase 2.
� Phase 2. Replace the b with i 1 and apply Fi ,Fi�1, . . . in that

order until only one entry is changing. Then replace that entry
with b.
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Local rule (G., J. Levinson and K. Purbhoo)

� Local rule for steps 1 � 3, without rectifying:
� Phase 1. Switch b with the nearest 11 after it in reading

order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 21 and 2, and so on until there
is no i 1 after it for some i .

At this point go to Phase 2.
� Phase 2. Replace the b with i 1 and apply Fi ,Fi�1, . . . in that

order until only one entry is changing. Then replace that entry
with b.
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Local rule (G., J. Levinson and K. Purbhoo)

� Local rule for steps 1 � 3, without rectifying:
� Phase 1. Switch b with the nearest 11 after it in reading

order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 21 and 2, and so on until there
is no i 1 after it for some i . At this point go to Phase 2.

� Phase 2. Replace the b with i 1 and apply Fi ,Fi�1, . . . in that
order until only one entry is changing. Then replace that entry
with b.
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Local rule (G., J. Levinson and K. Purbhoo)

� Local rule for steps 1 � 3, without rectifying:
� Phase 1. Switch b with the nearest 11 after it in reading

order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 21 and 2, and so on until there
is no i 1 after it for some i . At this point go to Phase 2.

� Phase 2. Replace the b with i 1 and apply Fi ,Fi�1, . . . in that
order until only one entry is changing. Then replace that entry
with b.
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Local rule (G., J. Levinson and K. Purbhoo)

� Local rule for steps 1 � 3, without rectifying:
� Phase 1. Switch b with the nearest 11 after it in reading

order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 21 and 2, and so on until there
is no i 1 after it for some i . At this point go to Phase 2.

� Phase 2. Replace the b with i 1 and apply Fi ,Fi�1, . . . in that
order until only one entry is changing. Then replace that entry
with b.
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Local rule (G., J. Levinson and K. Purbhoo)

� Local rule for steps 1 � 3, without rectifying:
� Phase 1. Switch b with the nearest 11 after it in reading

order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 21 and 2, and so on until there
is no i 1 after it for some i . At this point go to Phase 2.

� Phase 2. Replace the b with i 1 and apply Fi ,Fi�1, . . . in that
order until only one entry is changing. Then replace that entry
with b.
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Local rule (G., J. Levinson and K. Purbhoo)

� Local rule for steps 1 � 3, without rectifying:
� Phase 1. Switch b with the nearest 11 after it in reading

order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 21 and 2, and so on until there
is no i 1 after it for some i . At this point go to Phase 2.

� Phase 2. Replace the b with i 1 and apply Fi ,Fi�1, . . . in that
order until only one entry is changing. Then replace that entry
with b.
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Local rule (G., J. Levinson and K. Purbhoo)

� Local rule for steps 1 � 3, without rectifying:
� Phase 1. Switch b with the nearest 11 after it in reading

order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 21 and 2, and so on until there
is no i 1 after it for some i . At this point go to Phase 2.

� Phase 2. Replace the b with i 1 and apply Fi ,Fi�1, . . . in that
order until only one entry is changing. Then replace that entry
with b.
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Local rule (G., J. Levinson and K. Purbhoo)

� Local rule for steps 1 � 3, without rectifying:
� Phase 1. Switch b with the nearest 11 after it in reading

order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 21 and 2, and so on until there
is no i 1 after it for some i . At this point go to Phase 2.

� Phase 2. Replace the b with i 1 and apply Fi ,Fi�1, . . . in that
order until only one entry is changing. Then replace that entry
with b.
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Larger Phase 2 example
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Larger Phase 2 example
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Application: Schubert curves

� Grassmannian: Grpn, kq is the variety of k-dimensional
subspaces of Cn.

� Schubert varieties: Certain subvarieties ΩλpFq where λ fits
in a k � pn � kq rectangle and F is a complete flag.

� Schubert curve: A one-dimensional intersection of Schubert
varieties.

� Special Schubert curves: Three partitions α, β, γ with
|α| � |β| � |γ| � kpn � kq � 1. Define

S � Spα, β, γq � ΩαpF0q X ΩβpF1q X ΩγpF8q

where the flag Ft is the maximally tangent flag at t of the
rational normal curve in Pn�1:

p1 : tq ÞÑ p1 : t : t2 : � � � : tn�1q



Application: Schubert curves

� Grassmannian: Grpn, kq is the variety of k-dimensional
subspaces of Cn.

� Schubert varieties: Certain subvarieties ΩλpFq where λ fits
in a k � pn � kq rectangle and F is a complete flag.

� Schubert curve: A one-dimensional intersection of Schubert
varieties.

� Special Schubert curves: Three partitions α, β, γ with
|α| � |β| � |γ| � kpn � kq � 1. Define

S � Spα, β, γq � ΩαpF0q X ΩβpF1q X ΩγpF8q

where the flag Ft is the maximally tangent flag at t of the
rational normal curve in Pn�1:

p1 : tq ÞÑ p1 : t : t2 : � � � : tn�1q



Application: Schubert curves

� Grassmannian: Grpn, kq is the variety of k-dimensional
subspaces of Cn.

� Schubert varieties: Certain subvarieties ΩλpFq where λ fits
in a k � pn � kq rectangle and F is a complete flag.

� Schubert curve: A one-dimensional intersection of Schubert
varieties.

� Special Schubert curves: Three partitions α, β, γ with
|α| � |β| � |γ| � kpn � kq � 1. Define

S � Spα, β, γq � ΩαpF0q X ΩβpF1q X ΩγpF8q

where the flag Ft is the maximally tangent flag at t of the
rational normal curve in Pn�1:

p1 : tq ÞÑ p1 : t : t2 : � � � : tn�1q



Application: Schubert curves

� Grassmannian: Grpn, kq is the variety of k-dimensional
subspaces of Cn.

� Schubert varieties: Certain subvarieties ΩλpFq where λ fits
in a k � pn � kq rectangle and F is a complete flag.

� Schubert curve: A one-dimensional intersection of Schubert
varieties.

� Special Schubert curves: Three partitions α, β, γ with
|α| � |β| � |γ| � kpn � kq � 1. Define

S � Spα, β, γq � ΩαpF0q X ΩβpF1q X ΩγpF8q

where the flag Ft is the maximally tangent flag at t of the
rational normal curve in Pn�1:

p1 : tq ÞÑ p1 : t : t2 : � � � : tn�1q



Real geometry of S

� The arcs of SpRq covering R� and R� respectively induce the
shuffling and evacuation-shuffling bijections sh and esh:

LRpα, , β, γq
eshÝÝÑ
ÐÝÝ
sh

LRpα, β, , γq

� Monodromy operator: ω � sh � esh. Cycles of ω correspond
to connected components of SpRq.



Real geometry of S

Theorem(s). (Levinson, Speyer.) There is a degree-N map
f : S Ñ P1 that makes SpRq a smooth covering of the circle RP1,

with finite fibers of size N � cα, ,β,γ .

� The arcs of SpRq covering R� and R� respectively induce the
shuffling and evacuation-shuffling bijections sh and esh:

LRpα, , β, γq
eshÝÝÑ
ÐÝÝ
sh

LRpα, β, , γq

� Monodromy operator: ω � sh � esh. Cycles of ω correspond
to connected components of SpRq.



Real geometry of S

� (Fiber over 0) Ø Tableaux of shape γc{α with one inner
corner � and the rest a highest weight tableau of weight β.

� (Fiber over 8) Ø Tableaux of shape γc{α with one outer
corner � and the rest a highest weight tableau of weight β.

� The arcs of SpRq covering R� and R� respectively induce the
shuffling and evacuation-shuffling bijections sh and esh:

LRpα, , β, γq
eshÝÝÑ
ÐÝÝ
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Shuffling

� Shuffling, or JDT: Do an outer jeu de taquin slide with the
b as the empty square to get an element of LRpα, , β, γq.

1 1 1

1 2 2 2

2 3 3

1 3 4 4

3 4 5 ×

α

γ
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Shuffling

� Shuffling, or JDT: Do an outer jeu de taquin slide with the
b as the empty square to get an element of LRpα, , β, γq.
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Evacuation-shuffling

� Conjugation of shuffling by JDT rectification.

� Rectification: Treat � as 0.

� Shuffling

� Un-rectification: Treat � as largest entry.
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� Shuffle again to compute ω � sh � esh:

ωT :
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Local rule for evacuation-shuffling

� Recall: esh consists of rectifying, shuffling, and un-rectifying.
� (G., Levinson.) Local rule, without rectifying: Start at i � 1.

� Phase 1. Switch b with the nearest i prior to it in reading order, if
one exists. Increment i by 1 and repeat.

If the b precedes all of the i ’s in reading order, go to Phase 2.

� Phase 2. Replace the b with i and apply Fi ,Fi�1, . . . in that order
until only one entry is changing. Then replace that entry with b.

1 1 1
× 1 1 2 2
1 2 2 3
3 3 4

4 4
2 3 5
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Geometric consequences (G., Levinson)

� Connections to K -theory: Pechenik and Yong’s “genomic
tableaux” that are used to compute in K pGrpn, kqq appear
naturally as steps in the algorithm.

� Schubert curves can have arbitrarily high arithmetic genus
(connected ω-orbits with many genomic tableaux appearing).

� Schubert curves can have arbitrarily many connected
components, and in fact can be a disjoint union of arbitrarily
many copies of P1 (when all tableaux of the given shape and
content are fixed by ω).
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