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Background on Macdonald polynomials

I Macdonald polynomials ‹Hµ(X ; q, t) are symmetric functions
in X = {x1, x2, x3, . . .} with coefficients in Z[q, t].

I Here µ = (µ1, . . . , µk) ∈ Zk
+ is any partition, i.e.

µ1 ≥ µ2 ≥ · · · ≥ µk .

I Young diagram: µ = (4, 2, 2)

, µ∗ = (3, 3, 1, 1)

I Related to classical Macdonald polynomials Pλ by a
transformation, arise naturally in the geometry of the Hilbert
scheme of points in the plane. (Haiman)

I q, t-symmetry (via geometry): ‹Hµ(X ; q, t) = ‹Hµ∗(X ; t, q)
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A combinatorial formula (Haglund, Haiman, Loehr)

I Combinatorial Formula:‹Hµ(X ; q, t) =
∑

σ:µ→Z+

qinv(σ)tmaj(σ)xσ

I σ : µ→ Z+ is a filling of the Young diagram of µ with
positive integers.

Example: µ = (3, 2, 2), σ =
5 1
2 1
2 3 2

I xσ =
∏

x
|σ−1(i)|
i , in this case x21x

3
2x3x5

I inv and maj are statistics on fillings that generalize inv and
maj on permutations.

I q, t-symmetry not obvious from this formula
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Background: inv and maj on permutations

I Let π1π2 · · ·πn be a permutation of [n]. Then

inv(π) = |{(i , j) : i < j , πi > πj}|,

maj(π) =
∑

πd>πd+1

d

I Example: inv(51423) =

6 , maj() =

1 + 3 = 4

I inv and maj are equidistributed:∑
π∈Sn

qinv(π) =
∑
π∈Sn

qmaj(π) = (1)(1+q)(1+q+q2) · · · (1+q+· · ·+qn−1)

I Combinatorial proofs: Find a “weight-preserving” bijection
φ : Sn → Sn, i.e. a bijection such that maj(φ(π)) = inv(π).
Several such maps have been found (Carlitz, Foata,...)
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The Carlitz bijection Sn → Sn

I Carlitz codes: Let Cn = {c1c2 · · · cn : ∀i , 0 ≤ ci ≤ n − i}.
Define the weight of a code c ∈ Cn to be |c | =

∑
i ci . Then∑

c∈Cn

q|c| = (1)(1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1)

I Carlitz bijection: Composite φ : Sn → Sn of two
weight-preserving bijections

Sn
majcode−−−−−→ Cn

invcode←−−−− Sn.

Weight-preserving: |majcode(π)| = maj(π) and
| invcode(π)| = inv(π).
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The Carlitz bijection Sn → Sn

Sn
majcode−−−−−→ Cn

invcode←−−−− Sn

I majcode: Remove entries starting with the largest, ci records
the amount maj decreases at the ith step:

Word maj ci
51423 4

1423 2 2
123 0 2
12 0 0
1 0 0
∅ 0 0

majcode(51423) =

22000
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I invcode: ci is the number of inversions (j , i) where i < j .

I has four inversions:

(3, 1), (3, 2), (4, 1), and (4, 2)

I c1 = 2, c2 = 2, all other ci = 0.

invcode(34125) = 22000

I Since majcode(51423) = 22000 as well, the Carlitz bijection
sends

51423→ 34125.

I Can extend the Carlitz bijection from permutations to words
of any content.
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Conjugate Symmetry in q and t

I Recall that ‹Hµ(X ; q, t) = ‹Hµ∗(X ; t, q).

I Take the coefficient of xα = xα1
1 xα2

2 · · · on both sides:∑
σ:µ→Z+

|σ−1(i)|=αi

qinv(σ)tmaj(σ) =
∑

ρ:µ∗→Z+

|ρ−1i |=αi

qmaj(ρ)t inv(ρ).

I Combinatorial proof: Need a bijection from fillings of µ to
fillings of µ∗ that preserves content and switches inv and maj
simultaneously.
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inv and maj on fillings

σ =
6 3
1 5 7
2 4 1

I maj is the sum of the maj’s of the columns (top to bottom).

I maj(σ) = maj(612) + maj(354) + maj(71) = 1 + 2 + 1 = 4

I Inversions: A pair (a, b) with a to the left of b in a row is
usually an inversion if and only if a > b, except if the entry c
directly below a has value between a and b then the opposite
is true.

I Bottom row:

(2, 1), (4, 1)

I Second row:

(1, 5), (1, 7)

I Top row: (6, 3)

I inv(σ) = 5
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One-row shapes reduce to words

I If µ = (n) and σ is a filling of µ, then maj(σ) = 0 and
inv(σ) = inv(w(σ)) where w(σ) is the reading word of σ.

I Similarly if ρ fills µ∗ then inv(ρ) = 0 and maj(ρ) = maj(w(σ)).

5
1
4
2
3

−→ 3 1 4 2 5

maj = 4 inv = 4
inv = 0 maj = 0



Result: Hook shapes (G.)

I Given a filling σ of a hook shape, define invcode and majcode
according to the invcode and majcode of the row and column
respectively.

2 6 4 3
1
5 1 2 3 4 5 6

invcode 0 2 1 0
majcode 0 0 1

I Leftmost 0 of invcode matches rightmost 0 of majcode.

I Now interchange and reverse the two codes!

5 2 6
1
3
4 1 2 3 4 5 6

invcode 1 0 0
majcode 0 1 2 0
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Hall-Littlewood specialization: q = 0

I Hall-Littlewood polynomials: ‹Hµ(X ; t) = ‹Hµ(X ; 0, t)

I Symmetry problem restricts to fillings of µ with inv = 0 and
fillings of µ∗ with maj = 0. Need generalized Carlitz codes.

I ‹Hµ(X ; 0, t) = Frobt(Rµ) for certain graded Sn-modules Rµ.

I (Garsia, Procesi.) Rµ = C[z1, . . . , zn]/Iµ has a recursively
defined monomial basis.

I Basis Bµ given by recursion Bµ =
⊔

d z
d
n · Bµ(d) where µ(d) is

the shape formed by removing the corner in column µd .

µ:

0

1

2

× µ(2):

I Define Cµ = {c1 · · · cn : zc1n · · · zcn1 ∈ Bµ}.
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Generalizing Carlitz

Want weight-preserving bijections

Fµ|inv=0
majcode−−−−−→ Cµ

invcode←−−−− Fµ∗ |maj=0

where
Fµ|inv=0 = {σ : µ→ Z+ | inv(σ) = 0}

and
Fµ∗ |maj=0 = {ρ : µ∗ → Z+ | maj(ρ) = 0}.

Here the weight of a code c ∈ Cµ is |c | =
∑

ci , so the maj
statistic on the left and the inv statistic on the right will be sent to
this weight statistic on Cµ.



The map invcode

I Let ρ be a filling of µ∗ having maj(ρ) = 0. Order its entries by
size with ties broken in reading order, forming a totally
ordered alphabet A = {a1, . . . , an}.

I Attacking pair: (a, b) where a > b and b is either to the right
of a in the same row, or to the left of a in the row just below.

I Define invcode(ρ) = c1c2 · · · cn where ci is the number of
attacking pairs having ai as its smaller entry.

ρ =

5 6 2

4 6 1

3 2

A = 12234566

invcode(ρ) = 21200100
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The map invcode

Theorem (G.)

The map invcode is a weight-preserving bijection

invcode : Fµ∗ |maj=0
∼−→ Cµ.

I We now have half of the desired bijection:

Fµ|inv=0
majcode−−−−−→ Cµ

invcode←−−−− Fµ∗ |maj=0

I To extend majcode to fillings, want to remove the largest
entry and record how much the maj decreases by at each step.

I How to remove largest entry from an inversion-free filling σ?

3 4 6

7 1 2

5
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A recursion and Killpatrick’s map for distinct entries

I The recursion defining Bµ implies that we should remove the
largest entry from σ so that, if the major index decreases by
d , the resulting shape is µ(d).

I Killpatrick gave a combinatorial proof of this recursion in the
language of the charge statistic on words. This translates to
a map majcode for fillings σ having all distinct entries! ,

I Unfortunately, does not extend to repeated entries in any way
that preserves relative ordering of entries. /

I Via a different approach, can construct a map majcode for
three-row shapes with general entries.
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Results

Theorem (G.)

The Carlitz bijection can be extended to prove q, t-symmetry in
the following cases:

I Hook shapes: When µ is a hook shape.

I q = 0, distinct entries: For fillings with distinct entries (and
any shape µ) when one of the statistics is zero.

I q = 0, `(µ) ≤ 3: When one of the statistics is zero and µ has
at most three parts, showing that‹Hµ(X ; 0, t) = ‹Hµ∗(X ; t, 0)

for such shapes.
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