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Abstract

A combinatorial approach to the q, t-symmetry in Macdonald polynomials

by

Maria Monks Gillespie

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Mark Haiman, Chair

Using the combinatorial formula for the transformed Macdonald polynomials of Haglund,
Haiman, and Loehr, we investigate the combinatorics of the symmetry relation H̃µ(x; q, t) =

H̃µ∗(x; t, q). We provide a purely combinatorial proof of the relation in the case of Hall-
Littlewood polynomials (q = 0) when µ is a partition with at most three rows, and for the
coefficients of the square-free monomials in x for all shapes µ. We also provide a proof for
the full relation in the case when µ is a hook shape, and for all shapes at the specialization
t = 1. Our work in the Hall-Littlewood case reveals a new recursive structure for the cocharge
statistic on words.
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Chapter 1

Introduction

The study of Macdonald polynomials lies at the intersection of several different areas of
mathematics: symmetric function theory, the combinatorics of q- and q, t-analogs, the ring
of diagonal harmonics and other bi-graded Sn-representations, and the geometry of the
Hilbert scheme of n points in the plane. These symmetric functions were first defined by Ian
Macdonald in [30], and have been the subject of much recent study. In this work, we study
a certain symmetry relation exhibited by the Macdonald polynomials, and present progress
towards understanding the associated combinatorics from a more elementary point of view.

The Macdonald polynomials are a class of elements of the ring ΛQ(q,t)(x1, x2, . . .) of sym-
metric functions in the variables xi with coefficients in the field Q(q, t) of rational functions
in q and t with rational coefficients. There is one (transformed) Macdonald polynomial for

every partition µ, written H̃µ(X; q, t), and the collection of all Macdonald polynomials forms
a basis of ΛQ(q,t)(x1, x2, . . .) as a vector space over Q(q, t). They have the specializations

H̃µ(x; 0, 1) = hµ and H̃µ(x; 1, 1) = e
|µ|
1 ,

where hλ and eλ are the homogeneous and elementary symmetric functions, respectively.
As we will describe in more detail in Section 2.8, the Macdonald polynomials were origi-

nally defined by Ian Macdonald [30] as a two-parameter deformation of the Schur functions
that extends both the well-known Hall-Littlewood polynomials (obtained by setting q = 0)
as well as the Jack polynomials (obtained by setting q = tα and letting t→ 1). In particular,
the Macdonald polynomials can be defined as the unique collection of symmetric functions
satisfying certain orthogonality and triangularity conditions with respect to a specific q, t-
deformation of the Hall inner product.

In [30], Macdonald conjectured that the polynomials H̃µ(X; q, t) are Schur positive, in
the sense that

H̃µ(X; q, t) =
∑
λ

K̃λµ(q, t)sλ

where the coefficients K̃λµ(q, t) are polynomials in q and t with positive integer coefficients,
and where the sλ’s form the classical Schur basis for the ring of symmetric functions. Since
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Schur functions are in one-to-one correpondence with the irreducible representations of the
symmetric group Sn via the Frobenius characteristic map, the problem of proving Schur
positivity is equivalent to finding a doubly graded Sn-module whose Frobenius characteristic
is H̃µ(X; q, t).

In [12], Garsia and Haiman defined a class of doubly graded Sn-modules Rµ and conjec-

tured that the bi-graded Frobenius characteristic of Rµ is H̃µ(X; q, t). The modules Rµ are
defined as certain quotients the “diagonal action” of Sn on C[x1, . . . , xn, y1, . . . , yn] in which
a permutation π acts by permuting the xi’s and yi’s simultaneously:

π · xi = xπ(i) and π · yj = yπ(j).

(See Section 2.8 for details on the modules Rµ.)
Garsia and Haiman reduced their conjecture to the claim that Rµ has dimension n! as

a C-vector space, which became known as the n! conjecture . In order to prove the n!
conjecture, Haiman [22] established a link between the symmetric functions H̃µ(X; q, t) and
the geometry of the Hilbert scheme of n points in the plane. The Hilbert scheme Hilbn(C2) is
a moduli space which, as a set, consists of all ideals I ⊂ C[x, y] for which dimC C[x, y]/I = n.
Haiman showed that the “isospectral” Hilbert scheme (see Section 2.8) is Cohen-Macaulay
and Gorenstein, and from this inferred that the modules Rµ, which appear in the sheaf
structure of the zero fiber of the map from the isospectral Hilbert scheme, have the correct
dimension n!.

This geometric proof left open several other natural questions. First, if the spaces Rµ

have dimension n!, can we find an explicit basis of n! polynomials that generate it? In
particular, can we find a combinatorial proof of positivity, in the sense that

K̃λµ(q, t) =
∑
T

qs(T )tr(T ),

where T ranges over an appropriate set of Young tableaux and r and s are combinatorial
statistics? Assaf investigated these questions via the theory of dual equivalence in [1]. An
explicit basis for two-column partitions was found by Assaf and Garsia in [2], and Reiner
found a basis for “generalized hooks” (partitions of the form (a, 2, 1)) in [32]. In [17], Haiman,

Haglund, and Loehr give a formula for K̃λµ(q, t) for µ having two rows, and Fishel [10]
found a formula for two-column shapes µ in terms of the Kirillov and Reshetikhin’s rigged
configurations [27, 25]. However, much remains to be understood.

The n! conjecture is related to the similar-sounding (n + 1)n−1 conjecture. Define Rn =
C[x1, . . . , xn, y1, . . . , yn]/In, where In is the ideal generated by the positive-degree homo-
geneous invariants under the diagonal action of Sn. Then Rn is often called the ring
of diagonal coinvariants, and is naturally isomorphic to the ring of diagonal harmonics
DHn ⊂ C[x1, . . . , xn, y1, . . . , yn] consisting of the functions f that are killed by all the associ-
ated polynomial differential operators of the elements of In. Each Rµ is in fact a quotient of
this Sn-module Rn. In [21], Haiman conjectured that the ring Rn has dimension (n+ 1)n−1

as a C-vector space.



CHAPTER 1. INTRODUCTION 3

The (n+ 1)n−1 conjecture follows from the more refined fact, proven by Haiman in [23],
that the bigraded Frobenius character of Rn is ∇en. Here ∇ is the linear operator on
symmetric functions given by

∇H̃µ(X; q, t) = qn(µ
∗)tn(µ)H̃µ(X; q, t)

for all µ, where µ∗ is the conjugate partition and n(λ) =
∑

i(i− 1)λi. This proof too relied
on geometric methods and was decidedly lacking in an elegant combinatorial or algebraic
explanation.

More recently, combinatorial formulas for both the Macdonald polynomials and for ∇en
have been discovered. In [19], Haiman, Haglund, Loehr, Remmel, and Ulyanov put forth the
“shuffle conjecture”, which states that the Frobenius characteristic of the ring Rn has the
combinatorial formula

∇en =
∑

P∈PFn

qarea(P )tdinv(P )xP

where PFn is the set of word parking functions (associated to some Dyck path) of length
n and area and dinv are certain statistics on word parking functions. Here xP denotes
the monomial xm1

1 xm2
2 · · · where mi is the number of i’s occuring in the parking function

P . In the same year, Haiman, Haglund and Loehr [17] discovered and proved a similar
combinatorial formula for Macdonald polynomials, showing that

H̃µ(X; q, t) =
∑
σ∈Fµ

qinv(σ)tmaj(σ)xσ

where Fµ is the set of fillings of the Young diagram of µ with positive integers, and inv and
maj are statistics on these objects. Here, similarly, xσ = xm1

1 xm2
2 · · · where mi is the number

of i’s occuring in the filling σ. Haglund described the genesis of these statistics in [15].
In a very recent preprint by Carlsson and Mellit [6], the shuffle conjecture was proven.

In fact, the authors proved the more refined “compositional shuffle conjecture” of Haglund,
Morse, and Zabrocki [18], which breaks down the shuffle conjecture in terms of the possi-
ble choices of points at which the Dyck paths in the summation touch the main diagonal.
However, there are many generalizations of the shuffle conjecture which remain open, such
as a conjectured formula for ∇men for all m [19], or the rational shuffle conjecture, involving
north/east paths that remain above the diagonal in a k × n grid. [14] In 2013, Bergeron,
Garsia, Leven, and Xin [4] devised the compositional rational shuffle conjecture, which gen-
eralizes all the other variants by constructing the operators Eα

k,n, where α is a composition
of gcd(k, n), and conjecturing that

Eα
k,n · 1 =

∑
qdinv(P )tarea(P )sco(P ).

In this formula, dinv and area are generalizations of the statistics to paths above the diagonal
in a k×n grid, the sum is over all paths P that return to the diagonal according to cα where
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c = n/ gcd k, n, and sco(P) is a generalization of the Schur functions indexed by a certain
composition associated to P .

The combinatorial formulas mentioned above raise an interesting question. Based on
their connections to diagonal harmonics and the Hilbert scheme, the formulas should exhibit
a certain q, t-symmetry. In the case of ∇en, the formula should actually be symmetric in q
and t (see [29] for a potential combinatorial approach to this symmetry), and in the case of
Macdonald polynomials we must have conjugate symmetry:

H̃µ(X; q, t) = H̃µ∗(X; t, q).

However, the combinatorial formulas as stated use different statistics for the q and t ex-
ponents, and it is not immediately obvious that, combinatorially, they should exhibit such
symmetry.

In this work, we investigate the combinatorics of the conjugate q, t-symmetry relation in
the Macdonald polynomials. In terms of the inv and maj statistics, this relation becomes∑

σ:µ→Z+

qinv(σ)tmaj(σ)xσ =
∑

ρ:µ∗→Z+

qmaj(ρ)tinv(ρ)xρ. (1.1)

Note that if we set t = 1 and µ = (n) and take the coefficient of x1 · · ·xn on both sides, this
reduces to ∑

w∈Sn

qinv(w) =
∑
w∈Sn

qmaj(w),

which turns out to be the well-known equidistribution of the Mahonian statistics inv and
maj on permutations. There are several known bijective proofs of this simpler identity (see
[5, 11, 34]).

In light of this, it is natural to ask if there is an elementary combinatorial proof of (2.5),
in the sense of Problem 1.0.1 below. Here Fµ again denotes the set of fillings of the Young
diagram of µ with positive integers (see Section 2.5 below).

Problem 1.0.1. Find an explicit bijection

ϕ : Fµ → Fµ∗

which interchanges inv and maj, i.e.

inv(ϕ(σ)) = maj(σ) and maj(ϕ(σ)) = inv(σ)

for all σ ∈ Fµ.

In this work, we provide explicit bijections ϕ for several infinite families of fillings. Our
bijections naturally extend Carlitz’s bijection [5] that shows the equidistribution of inv and
maj on permutations. We begin with some necessary background on tableaux, combinatorial
statistics, symmetric functions, and Hall-Littlewood and Macdonald polynomials in Chapter
2.
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Chapters 3 and 4 focus on the specialization of this symmetry relation at q = 0, at which
the Macdonald polynomials specialize to the Hall-Littlewood polynomials. Combinatorially,
this specialization involves only the fillings σ of µ or ρ of µ∗ having inv(σ) = 0 or maj(ρ) = 0
respectively. In Chapter 3, we extend the Carlitz codes used in the Carlitz bijection to this
setting using the theory of the Garsia-Procesi modules studied in [13]. We also demonstrate
a bijection invcode from the fillings of µ∗ having maj = 0 to the generalized Carlitz codes.

In Chapter 4, we first complete the Hall-Littlewood specialization of the symmetry prob-
lem for fillings with distinct entries in section 4.1, by finding a bijection majcode (for fillings
of µ having inv = 0) which arises from a bijection of Killpatrick given in [26]. Since this
bijection does not naturally standardize to repeated entries, we use a different approach in
the remaining sections of Chapter 4 in order to obtain a full proof of symmetry for three-
row shapes, as well as “fat hooks”, the shapes µ = (a, b, 1, 1, 1, . . . , 1) consisting of a single
column plus two rows.

In essence, we construct a recursive procedure that is defined only on rectangular and
two-row shapes, and can iterate this procedure to form our bijection only when every shape
contained in µ is a union of a rectangle and a two-row shape. This condition is equivalent
to the statement that µ is either a three-row shape or a fat hook.

In Section 4.6, we state some applications of the results on the Hall-Littlewood case to
understanding the rings Rµ, in particular regarding the cocharge statistic of Lascoux and
Schutzenberger (see [13] or [20], for instance). In particular, we demonstrate a new recursive
structure exhibited by the cocharge statistic on words. Finally, in Section 5.1 we give a
combinatorial proof of the symmetry relation for the specialization t = 1, and in Section 5.2
we give an explicit bijection ϕ in the case that µ is a hook shape.

The following theorem summarizes our results.

Theorem 1.0.2. The bijective maps invcode and majcode that comprise the classical Carlitz
bijection majcode ◦ invcode−1 : Sn → Sn can be extended to give bijections on fillings that
interchange inv and maj in the following cases:

1. In the Hall-Littlewood specialization q = 0, i.e. when one of the statistics is zero, for all
partitions µ = (µ1, µ2, µ3) having at most three parts, and when µ = (a, b, 1, 1, . . . , 1)
is the union of a column and a two-row shape.

2. In the Hall-Littlewood specialization q = 0 (for all shapes) when we restrict to the
fillings having distinct entries.

3. In the specialization t = 1, i.e. when one of the statistics is ignored.

4. When µ is a hook shape.

Remark 1.0.3. The first item in the list above gives the first combinatorial results towards
understanding the q, t-Kostka polynomials for these shapes. As mentioned above, the only
shapes µ for which K̃λµ(q, t) is currently understood via tableaux statistics are two-row
shapes [2, 10] and generalized hooks [32].
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Chapter 2

Background

2.1 Combinatorial statistics and q-analogs

We will be dealing throughout with a number of combinatorial statistics , or combinato-
rially defined maps from a set C of combinatorial objects to Z. We will also be working with
maps that preserve these statistics. In order to simplify our notation, we define a category
called CStat, the category of combinatorial statistics.

Objects: An object of CStat, called a weighted set and written

(C; stat1, stat2, . . .),

consists of a countable set C and a countably infinite collection of functions stati : C → Z,
called statistics, such that:

1. For all (n1, n2, . . .) ∈ Z∞, the set {c ∈ C | stati(c) = ni for all i} is a finite subset of
C, and

2. All but a finite number of the statistics stati are the zero map.

If only a finite number of statistics is specified, it is assumed that the rest of the statistics
are the zero map. We also sometimes refer to a weighted set by its underlying set C if the
statistics are understood.

Morphisms: A morphism of weighted sets φ : (C; s1, s2, . . .) → (D; t1, t2, . . .) is a map
φ : C → D of sets such that for each i,

ti ◦ φ = si.

It is not hard to see that this collection of objects and morphisms forms a category. We
also use the following constructions on objects of CStat.

q-series: The finiteness conditions on the objects imply that we can associate a generat-
ing function, or q-series, to each object. In particular, let q1, q2, . . . be a countable collection



CHAPTER 2. BACKGROUND 7

of indeterminates, and define the q-series of a CStat object C to be the formal sum

C(q1, q2, . . .) =
∑
c∈C

q
stat1(c)
1 q

stat2(c)
2 · · ·

This is a well-defined formal series in the variables qi since each monomial has a finite
number of factors by the second condition, and the coefficient of qa11 q

a2
2 · · · is finite by the

first condition.
Restrictions: We can restrict a CStat object along any finite number of statistics as

follows. Given an object C = (C; stat1, stat2, . . .), and any constant s ∈ Z, we define the
restriction object C |stati=s by

C|stati=s = ({a ∈ C | stati(a) = s}; stat1, stat2, . . . , ŝtati, . . .).

Its statistics are statj for j 6= i.
Note that restricting to stati = 0 corresponds to setting qi = 0 in the corresponding

q-analog. Setting qi = 1 corresponds to simply dropping the statistic stati from the list of
statistics.

Remark 2.1.1. Notice that the q-series of a weighted set uniquely determines it up to
isomorphism.

To illustrate weighted sets, we recall the classical Mahonian inv and maj statistics on
permutations. (See [34] or [35] for a more complete introduction.) Let [n] = {1, 2, 3, . . . , n}
throughout. We write Sn to be the set of permutations π of [n], that is, bijections π : [n]→
[n]. We often write a permutation π as a list, π1 · · · πn, where πi = π(i).

Definition 2.1.2. For a permutation π = π1 · · · πn ∈ Sn,

inv(π) = |{(i, j)|i < j, πi > πj}|.

A pair (i, j) satisfying i < j and πi > πj is called an inversion of π.

Remark 2.1.3. The value of inv(π) is equal to the minimum length of π as a product of
adjacent transpositions si = (i i+ 1).

The weighted set (Sn; inv) is an object in CStat, with q-series
∑

π∈Sn q
inv(π). Notice that

this weighted set has a nontrivial automorphism, namely, the map sending π 7→ π−1, since
any inversion of π corresponds to a unique inversion of π−1.

As another example of a morphism, consider the weighted set (Sn; inv) where

inv(π) =

(
n

2

)
− inv(π).

Then the “reversing” map that sends π1, . . . , πn to πn, . . . , π1 is a bijective morphism in
CStat, since (i, j) is an inversion of π if and only if it is not an inversion of the reverse of π.
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Definition 2.1.4. The reverse map

r : (Sn; inv)→ (Sn; inv)

is given by r(π) = πn · · · π1.
Finally, we will also use the “flip” morphism on permutations in which we replace any

entry πi with n+ 1− πi, to take us back to inv from inv.

Definition 2.1.5. The flip map flip : (Sn; inv) → (Sn; inv) is given by flip(π) = ρ where
ρi = n+ 1− πi for all i.

It is well known (see [5], [35]) that the q-series
∑

π∈Sn q
inv(π) factors as the q-factorial

(n)q! = 1(1 + q)(1 + q + q2) · · · (1 + q + q2 + · · ·+ qn−1),

and we will recall a proof of this fact in the next section. A combinatorial statistic stat :
Sn → Z is called a Mahonian statistic if it has this exact q-series, i.e.∑

π∈Sn

qstat(π) = (n)q!.

There are many known families of Mahonian statistics (see e.g. [3], [24], [31], and [38]), and
in this paper we will be considering one additional Mahonian statistic, the major index .

Definition 2.1.6. The major index of a permutation π = π1 · · · πn is given by

maj(π) =
∑

πd>πd+1

d.

An entry πd for which πd > πd+1 is called a descent of π.

2.2 The Carlitz bijection

We now construct the Carlitz bijection , a bijection φ : (Sn; inv) → (Sn; maj), and show
that inv and maj are both Mahonian. This shows in particular that inv and maj are equidis-
tributed on Sn, meaning that the associated CStat objects are isomorphic.

Definition 2.2.1. A Carlitz code of length n is a sequence c = c1, · · · , cn consisting of
nonnegative integers such that cn−i ≤ i for all i. Let Cn denote the set of all Carlitz codes
of length n, equipped with the combinatorial statistic Σ : Cn → Z defined by Σ(c) =

∑
i ci.

Notice that there are n! Carlitz codes of length n. We will make use of the weighted set
(Cn; Σ) as an intermediate CStat object connecting (Sn; inv) to (Sn; maj). In particular, the
Carlitz bijection is the composite

(Sn; inv)
invcode

- (Cn; Σ)
majcode−1

- (Sn; maj)
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of two simple isomorphisms of weighted sets. The existence of these isomorphisms implies
that the q-series of (Sn; inv) and of (Sn; maj) are equal to that of (Cn; Σ). The latter clearly
has q-series (n)q! = (1 + q + q2 + · · · + qn−1) · · · (1 + q + q2)(1 + q)(1), since the choice of
monomial from the i-th factor corresponds to the value of ci.

Definition 2.2.2. The inversion code of a permutation π, denoted invcode(π), is the
sequence c1, c2, . . . , cn where ci is the number of inversions of the form (π−1(j), π−1(i)) for
some j, i.e. where i < j and i is to the right of j in π.

Example 2.2.3. We have invcode(4132) = 1210, because the 1 is the smaller entry of one
inversion (4, 1), the 2 is the smaller entry of the two inversions (3, 2) and (4, 2), the 3 is the
smaller entry of the inversion (4, 3), and the 4 is not the smaller entry of any inversion.

Clearly invcode is a map (Sn; inv)→ (Cn; Σ), and it is not hard to see that it is bijective.
Indeed, given a Carlitz code c = c1, . . . , cn, the unique permutation π having invcode(π) = c
can be constructed as follows. The entry cn = 0 gives us no information, but cn−1 is either
0 or 1, and respectively determines whether the n− 1 is to the left or to the right of the n.
The entry cn−2 then determines where n− 2 occurs relative to the positions of n− 1 and n,
and so on. It is also clear that invcode is an isomorphism of weighted sets, sending inv(π)
to Σ({ci}).

Definition 2.2.4. The major index code of a permutation π is defined as follows. For
each k define ψk : Sk → Sk−1 to be the restriction map that deletes the k from a permutation
ρ1, . . . , ρk of {1, 2, . . . , k}. Define

π|k = ψk+1(ψk+2(· · ·ψn(π) · · · ))

for each k, and let ci = maj(π|n−i+1)−maj(π|n−i) for each i. Then we define majcode(π) =
c1, c2, . . . , cn.

Example 2.2.5. Let π = 3241. Its major index is 1 + 3 = 4. Removing the 4 results in
the permutation 321, which has major index 3, so the major index has decreased by 1 and
we set c1 = 1. Removing the 3 results in 21, which decreased the major index by 2. Hence
c2 = 2. Removing the 2 decreases the major index by c3 = 1, and removing the 1 decreases
it by c4 = 0, so majcode(π) = 1210.

As in the case of invcode above, it is not hard to construct an inverse for majcode, making
it an isomorphism of weighted sets (Sn; maj) → (Cn,Σ). Indeed, there is a unique way to
reverse the restriction maps ψk given a code ci, so as to increase the maj by cn−k+1 when
inserting the entry k.

A full proof of this fact can be found in Carlitz’s original paper [5], or in a somewhat
cleaner form in [34]. We give a sketch of the proof here. Given a permutation ρ of {1, . . . , k−
1}, consider the k possible positions in which to insert a k to form a permutation of {1, . . . , k}.
Let p0 be the rightmost such position and let p1, . . . , pr be the positions just after a descent
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of ρ, from right to left. Then, label the remaining positions pr+1, . . . , pk. Then it is not hard
to show that inserting the k at position pd has the effect of increasing the major index by d.
Therefore, the code entry cn−k+1 ∈ {0, 1, . . . , k} determines the position at which we must
insert the k to reverse the restriction map ψk.

We now compose these bijections to form the Carlitz bijection.

Definition 2.2.6. The Carlitz bijection is the isomorphism

majcode−1 ◦ invcode : (Sn; inv)→ (Sn; maj).

Example 2.2.7. We have majcode−1 ◦ invcode(4132) = majcode−1(1210) = 3241 by the
examples above.

2.3 Words and the Foata bijection

There is another classical bijection that demonstrates the equidistribution of inv and maj
directly, called the Foata bijection φ. In order to make the definition cleaner we introduce
a new operation on permutations, and more generally on words .

Throughout this paper a word is any sequence of positive integers. The content of
a word w = w1, . . . , wn is the tuple (α1, α2, . . .) where αi is the number of occurrences of
i among the entries of w. A permutation in Sn, then, can be thought of as a word with
content (1n).

Definition 2.3.1. If w = w1w2 · · ·wn is a word, we define

cyc(w) = w2w3 · · ·wnw1

to be the word formed by moving the first letter to the end.

The cycling operation cyc is useful in defining the Foata bijection φ:

Definition 2.3.2. Let v = v1, . . . , vn be a word. We define w = φ(v) by recursively con-
structing a sequence of partial permutations w(1), . . . , w(n), with w = w(n), as follows.

Let w(1) = v1. For 1 ≤ i < n, suppose w(i) = b1, . . . , bi. If bi ≤ vi+1 (respectively if
bi > vi+1), consider the unique factorization of w(i) into subwords f (1) · · · f (k) such that the
rightmost element of each f (j) is less than or equal to (resp. greater than) vi+1, and all other
elements are greater than (resp. less than or equal to) vi+1. Define

w(i+1) = g1 · · · gkvi+1,

where gj = cyc−1(fj) for all j.
The restriction of φ to Sn is a bijection φ : Sn → Sn called the Foata bijection .

Foata and Schützenberger [11] showed that this bijection sends maj to inv, and so we
have the following.
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Proposition 2.3.3. The Foata bijection is an isomorphism of weighted sets (Sn; maj) →
(Sn; inv).

For a full proof, we refer the reader to [11] or [34].

Example 2.3.4. Let π = 31254. Then φ(π) is the last entry in this sequence of partial
permutations:

3

|3|1
|31|2
|1|3|2|5
|1325|4
51324

At each step, the vertical lines divide the blocks that are cycled to obtain the next step, and
the next entry in the permutation is added to the end at each step. Notice that maj(31254) =
inv(51324) = 5.

Example 2.3.5. A similar process can be used on words, as described in the definition. For
instance, starting with the word 21132, we have the sequence

2

|2|1
|21|1
|1|2|1|3
|1213|2
31212

Thus φ(21132) = 31212.

Example 2.3.5 suggests extending the definitions of inv and maj to words.

Definition 2.3.6. Given a word w = w1, . . . , wn, we define

inv(w) = |{(i, j)|i < j, wi > wj}|

and
maj(w) =

∑
wd>wd+1

d.

Definition 2.3.7. Let Wα
n denote the set of all words of length n and content α.
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Foata’s map is also an isomorphism φ : (Wα
n ; maj)→ (Wα

n ; inv) for any n and α.
Unlike the Carlitz bijection, the Foata bijection does not immediately give rise to a proof

of the factorization of the q-series of (Sn; inv). However, it has the advantage of preserving
the “inverse descent set” of a permutation.

Definition 2.3.8. The inverse descent set of a permutation π, denoted iDes(π), is the set
of descents of π−1. In other words, it is the set of entries a for which a+ 1 occurs earlier in
the permutation.

The inverse descent set is preserved under φ since, if a occurs after a+1, then it is added
at a later step in the Foata bijection, and the two can then never be in the same block at a
step after that. Thus they can never switch places relative to each other.

The inverse descent set arises in the decomposition of certain symmetric functions into
Gessel’s quasisymmetric functions (see e.g. [17]). As a more immediate application of study-
ing the relative orderings of entries in the word, we note that there is a standardization map
on words that is compatible with Foata’s bijection.

Definition 2.3.9. Given a word w1, . . . , wn, we define the standardization of w to be the
unique permutation π for which πi < πj if and only if either wi < wj or wi = wj and i < j.

For instance, the standardization of 21132 is 31254. Notice that the blocks in the steps
of the Foata bijection are the same for both permutations, and indeed this is true in general.

2.4 Partitions and tableaux

In this section we recall some combinatorial basics involving partitions and Young tableaux.
A partition of a positive integer n is a sequence (λ1, . . . , λk) of positive integers, called the
parts of the partition, satisfying

λ1 ≥ · · · ≥ λk and
k∑
i=1

λi = n.

We write `(λ) to denote the number of parts of λ. We also write |λ| =
∑
λi to denote the

size of λ.
The Young diagram of the partition λ = (λ1, . . . , λk) is the set of pairs (i, j) with

1 ≤ j + 1 ≤ k and 1 ≤ i + 1 ≤ λj+1. Such a pair is called a cell of the diagram. We draw1

the Young diagram as the partial grid of unit squares whose lower left corners are at the
cells (i, j) of λ. For instance, the Young diagram of the partition (5, 2, 2, 1) is shown below:

1Young diagrams as described here are often referred to as being drawn in “French notation”, in which
the rows are listed from bottom to top. The “English notation” lists the rows from top to bottom.
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Figure 2.1: A partition λ and its transpose λ∗.

We often refer to a partition λ and its Young diagram interchangeably. For instance we
may refer to the cells or the squares of λ. We refer to the rows and columns of a partition
according to its diagram.

The dominance partial ordering on partitions is given by λ ≥ µ if and only if λ1 +λ2 +
· · ·+ λi ≥ µ1 + µ2 + · · ·+ µi for all i.

The conjugate or transpose of a partition λ is the partition λ∗ formed by reflecting λ
about the diagonal y = x. That is, (j, i) is a cell of λ∗ if and only if (i, j) is a cell of λ. For
instance, if λ = (5, 2, 2, 1) then λ∗ = (4, 3, 1, 1, 1).

The arm (resp. leg) of a cell x in λ are respectively the sets of squares to the right of
(resp. above) x in its row (resp. column). We write a(x) and l(x) for the sizes of the arm
and leg of a cell x, and define the hook of x to be the union of the arm, leg, and {x}. A
partition is a hook shape if for every cell (i, j) we have ij = 0.

We occasionally work with certain subsets of the cells of a Young diagram of a partition,
so we define a general diagram to be any finite collection of cells (i, j) with i, j nonnegative
integers.

A filling of a diagram D is a map σ : D → Z+ (which we sometimes write σ : µ→ Z+),
and we represent a filling by writing σ(x) inside the square of x for each cell x. We call σ(x)
the entry written in cell x. The content of a filling σ is the tuple

content(σ) = (|σ−1(1)|, |σ−1(2)|, . . . , |σ−1(n)|)

where n is the largest entry in σ. The reading word of a filling is the word formed by
concatenating the rows from top to bottom (as one would read a book). The total ordering
of the entries determined by left-to-right order in the reading word is called the reading
order .

A filling is a semistandard young tableau , or SSYT, if the entries are weakly increas-
ing left-to-right in each row and strictly increasing bottom-to-top in each column, that is, if
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σ(i, j) ≤ σ(i + 1, j) and σ(i, j) < σ(i, j + 1) for all i and j. A semistandard Young tableau
of shape λ is standard if its content is (1, 1, 1, . . . , 1) for some number of 1’s.

The tableau shown below is a semistandard Young tableau with content (2, 2, 3, 1, 0, 1).

1 1 2 3

2 3 3

4 6

We will often be working with the set of all fillings of a fixed content and shape, as defined
below.

Definition 2.4.1. We use the notation Fαµ for the set

Fαµ = {σ : µ→ Z+|content(σ) = α}.

2.5 The statistics inv, maj, and cocharge

In [17], the statistics inv and maj were extended to Young diagram fillings, and we recall the
definitions here.

Definition 2.5.1. Given a filling σ of a partition µ, let w(1), . . . , w(µ1) be the words formed
by the successive columns of σ, read from top to bottom. Then

maj(σ) =
∑
s

maj(w(s)).

Example 2.5.2. The major index of the filling in Figure 2.2 is 7, since the first column has
major index 6, the second has major index 0, and the third column, 1.

Remark 2.5.3. The major index restricts to the usual major index on words in the case
that the partition is a single column.

3 5 3

4 3 6

1 1

2

2

Figure 2.2: A filling of a Young diagram. Descents are shown in boldface, and attacking
pairs are connected with gray lines.
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For the statistic inv, we start with the definition provided in [17]. A descent is an entry
which is strictly greater than the entry just below it.

Definition 2.5.4. An attacking pair in a filling σ of a Young diagram is a pair of entries
u and v with u > v satisfying one of the following conditions:

1. u and v are in the same row, with u to the left of v, or

2. u is in the row above v and strictly to its right.

Definition 2.5.5. The statistic inv on fillings is defined as

inv(σ) = |Attack(σ)| −
∑

d∈Des(σ)

a(d),

where Attack(σ) is the set of attacking pairs in σ, Des(σ) is the set of descents, and a(d) is
the length of the arm of the descent d.

Example 2.5.6. In Figure 2.2, there are 4 attacking pairs, and the arms of the descents
have lengths 0, 2, and 0. Thus inv(σ) = 4− 2 = 2 in this case.

Remark 2.5.7. The inv statistic restricts to the usual inv on words in the case that the
partition is a single row.

For our purposes, we will also need the following cleaner definition of the inv statistic.
This more closely resembles the inv statistic on a permutation.

Definition 2.5.8. Let σ be any filling of a Young diagram with letters from a totally
ordered alphabet A, allowing repeated letters. A relative inversion of a filling σ of a
Young diagram is a pair of entries u and v in the same row, with u to the left of v, such that
if b is the entry directly below u, one of the following conditions is satisfied:

• u < v and b is between u and v in size, in particular u ≤ b < v.

• u > v and b is not between u and v in size, in particular either b < v < u or v < u ≤ b,

If u and v are on the bottom row, we treat b as any value less than min(u, v), usually 0 in
the case A = Z+.

Remark 2.5.9. The conditions above for u and v in a triple (u, v, b) to form a relative
inversion are equivalent to the statement that the ordering of the sizes of u, b, v orients the
triple counterclockwise: either b < v < u, v < u ≤ b, or u ≤ b < v.

Example 2.5.10. In Figure 2.2, there are 2 relative inversions: (5, 3) in the bottom row,
and (3, 6) in the second row.
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In fact, the number of relative inversions in a filling σ is always equal to inv(σ). In
[17], the authors introduce the related notion of an inversion triple. Relative inversions
are simply the inversion triples that contribute 1 to inv(σ). The description in terms of
relative inversions allows us to think of the inv as being computed row by row (just as maj
is computed column by column).

For completeness, we include here a proof that inv(σ) is equal to the number of relative
inversions of σ.

Proposition 2.5.11. The quantity inv(σ) is equal to the number of relative inversions of σ.

Proof. Recall that inv(σ) is the total number of attacking pairs minus the arms of the
descents. Each descent of the form u > b where b is the entry directly below u contributes
−1 towards inv(σ) for each v to the right of u in the same row. Call such pairs (u, v)
descent-arm pairs. Each attacking pair contributes +1 towards inv(σ).

Define a good triple to be a triple of entries (u, v, b) where u is directly above and adjacent
to b and v is to the right of u in its row, where we also allow b to be directly below the entire
tableau with a value of 0. Then each descent-arm pair or attacking pair is a member of a
unique good triple, and contributes −1 or +1, respectively, to inv(σ). Therefore, inv(σ) is
the sum of the contributions of all such pairs in each such triple.

A simple case analysis shows that each good triple contributes a total of 1 if it is a relative
inversion and 0 otherwise. Thus inv(σ) is the total number of relative inversions.

We now introduce the cocharge statistic on words, a variant of the charge statistic first
defined by Lascoux and Schützenberger in [28]. To define it, we first recall the definition of
Knuth equivalence.

Definition 2.5.12. Given a word w = w1 · · ·wn of positive integers, a Knuth move consists
of either:

• A transposition of the form xyz → xzy where x, y, z are consecutive letters and y <
x ≤ z or z < x ≤ y

• A transposition of the form xyz → yxz where x, y, z are consecutive letters and x ≤
z < y or y ≤ z < x.

Two words w, w̃ are said to be Knuth equivalent, written w ∼ w̃, if one can be reached from
the other via a sequence of Knuth moves. Knuth equivalence is an equivalence relation on
words.

The cocharge can be defined in terms of Knuth equivalence classes as follows.

Definition 2.5.13. Given a word w = w1, · · · , wn with partition content µ, the cocharge of
w, denoted cc(w) is the unique statistic satisfying the following properties:

1. It is constant on Knuth equivalence classes, that is, if w is Knuth equivalent to w̃ then
ccw = cc w̃.
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2. If w = w1w2 · · ·wn and w 6= 1, let cyc(w) = w2w3 · · ·wnw1 be the word formed by
moving the first letter to the end. Then

cc(cyc(w)) = cc(w)− 1.

3. If the letters of w are weakly increasing then cc(w) = 0.

There is also an algorithmic way of computing cocharge.

Definition 2.5.14. Let w be a word with partition content µ, so that it has µ1 1’s, µ2 2’s,
and so on. Let w(1) be the subword formed by scanning w from right to left until finding
the first 1, then continuing to scan until finding a 2, and so on, wrapping around cyclically
if need be. Let w(2) be the subword formed by removing w(1) from w and performing the
same process on the remaining word, and in general define w(i) similarly for i = 1, . . . , µ1.

It turns out that
cc(w) =

∑
i

cc(w(i)),

(see, e.g., [17]) and one can compute the cocharge of a word w(i) having distinct entries
1, . . . , k by the following process.

1. Set a counter to be 0, and label the 1 in the word with this counter, i.e. give it a
subscript of 0.

2. If the 2 in the word is to the left of the 1, increment the counter by 1, and otherwise
do not change the counter. Label the 2 with the new value of the counter.

3. Continue this process on each successive integer up to k, incrementing the counter if
it is to the left of the previous letter.

4. When all entries are labeled, the sum of the subscripts is the cocharge.

There is a direct link between the major index of fillings σ having inv(σ) = 0 and the
cocharge of words. The connection lies in the cocharge word construction.

Definition 2.5.15. The cocharge word of a filling σ : µ → Z+ is the word cw(σ) =
i1i2 · · · in consisting of the row indices of the cells uk = (ik, jk), where u1, u2, . . . , un is the
ordering of the cells of µ such that σ(u1) ≥ σ(u2) ≥ · · · ≥ σ(un), and for each constant
segment σ(uj) = · · · = σ(uk), the cells uj, · · · , uk are in reverse reading order.

It turns out that for any filling σ such that inv(σ) = 0, we have maj(σ) = cc(cw(σ)).
(See [17] for the proof.) Notice also that the content of the cocharge word is µ, and the
following proposition shows that if we are given the cocharge word along with the content α
of σ then we can recover σ uniquely.



CHAPTER 2. BACKGROUND 18

Definition 2.5.16. We say that a sequence of numbers a1, . . . , an is in cyclic order if
there exists an index i ∈ [n] for which

ai+1 ≤ ai+2 ≤ · · · ≤ an ≤ a1 ≤ a2 ≤ · · · ≤ ai.

The above definition is used throughout, as well as in the proof of the following proposi-
tion.

Proposition 2.5.17. Let µ = (µ1, . . . , µk) be a partition. Given a tuple of multisets
(A1, . . . , Ak) of positive integers where |Ai| = µi for all i, there is a unique filling σ of
µ with inv(σ) = 0 whose i-th row contains precisely the numbers in Ai for all i.

Proof. Since inv(σ) = 0, the bottom row has the elements of A1 in increasing order from left
to right. We now induct on the rows. Suppose row i is filled in with entries b1, . . . , br left to
right. The leftmost entry a1 of row i + 1 must be the smallest element of Ai+1 that comes
after b1 in cyclic order. Then the next entry a2 must be the smallest element of Ai+1 \ {a1},
that comes after b2 in cyclic order, and so on. This uniquely determines row i+ 1.

It follows that the cocharge word map is an isomorphism

cw : (Fαµ |inv=0; maj)→ (W µ
n ; cc)

for any α such that
∑
αi = |µ| = n.

Remark 2.5.18. Throughout, we will use the phrase “rearrange the entries in each row in
the unique way such that inv(σ) = 0” to refer to the unique filling given by Proposition
2.5.17.

2.6 Symmetric functions

Let S∞ be the “infinite symmetric group” generated by adjacent transpositions (i, i+ 1) on
the positive integers, and consider its action by permuting the variables of the formal power
series ring K[[x1, x2, x3, . . .]] where K is any field of characteristic 0. This restricts to an
action on the homogeneous series of (total) degree d for each d. Then the ring of symmetric
functions over K, is the ring generated by the homogeneous invariants of each degree:

ΛK(x1, x2, . . .) =
⊕
d

K[[x1, x2, x3, . . .]]
S∞
d

The multiplication is naturally inherited from K[[x1, x2, x3, . . .]]. We often simply write X
to denote the infinite set of variables x1, x2, . . ., so that ΛK(X) is the ring of symmetric
functions in these variables.

There are several natural bases for the ring of symmetric functions, all indexed by parti-
tions λ = (λ1, . . . , λk). We refer the reader to [30] or [35] for thorough introductions to the
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theory of symmetric functions. For convenience we recall the basic definitions below, which
we will use throughout.

Monomial symmetric functions:

mλ =
∑

ia 6=ib ∀a,b,
ia<ib if λa=λb

xλ1i1 · · ·x
λk
ik

Homogeneous symmetric functions: hλ = hλ1 · hλ2 · · · · · hλk where

hd =
∑

i1≤···≤id

xi1 · · ·xid

Elementary symmetric functions: eλ = eλ1 · eλ2 · · · · · eλk where

ed =
∑

i1<···<id

xi1 · · ·xid

Power sum symmetric functions: pλ = pλ1 · pλ2 · · · · · pλk where

pd = xd1 + xd2 + xd3 + · · ·

Schur functions:
sλ =

∑
T∈SSYT(λ)

x
α1(T )
1 xα2

2 (T ) · · ·

where SSYT(λ) is the set of all semistandard Young tableaux of shape λ, and αi(σ) is the
number of i’s in T .

The Hall inner product is an inner product on Λk(X) defined by setting

〈sλ, sµ〉 = δλµ,

and extending by linearity. This inner product has the properties that 〈hµ,mλ〉 = δλµ and
〈pλ, pµ〉 = zλδλµ, where zλ =

∏
i i
mimi! where mi is the number of times i occurs in λ.

It is well-known (see [30] or [33]) that the irreducible representations of the symmetric
group Sn are also indexed by the partitions λ of size n, and we write V λ to denote the
irreducible Sn-module (sometimes called the Specht module) arising in this way. Let S∨n
denote the set of all representations of Sn.

There is a natural correspondence between representations of the symmetric group Sn
and a certain class of symmetric functions, that captures other aspects of the representation
theory as well. The correspondence is given by the Frobenius map Frob : S∨n → ΛQ(X),
given by

Frob(V ) =
1

n!

∑
π∈Sn

χV (π)pλ
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where χV is the character of the representation V . Under this map we have Frob(V λ) = sλ
for the irreducible representations V λ, along with the rules

Frob(V ⊕W ) = Frob(V ) + Frob(W ) (2.1)

Frob(V ⊗W ) = Frob(V ) · Frob(W ) (2.2)

Since any representation decomposes uniquely as a direct sum of irreducible representations,
equation (2.1) implies that the range of Frob consists precisely of the symmetric functions
that are positive integer sums of Schur functions sλ. We call such a symmetric function
Schur positive .

Throughout, we will be working with generalizations of the Frobenius map that capture
the structure of a graded or bi-graded Sn-module, as follows. For a graded Sn-module V =⊕

d Vd, we define Frobq(V ) =
∑

d q
d Frob(Vd), and for a bigraded Sn-module V =

⊕
i,j Vi,j,

we define
Frobq,t(V ) =

∑
i,j

qitj Frob(Vi,j).

The map Frobq,t (respectively Frobq) gives a morphism from the ring of Z-linear combi-
nations of Sn-modules, with the additive and multiplicative structure of ⊕ and ⊗, to the
ring ΛQ(q,t)(X) (respectively ΛQ(q)(X).) We say that a symmetric function f ∈ ΛQ(q,t)(X)
is Schur positive if it is a linear combination of Schur functions sλ with coefficients in
Z+[q, t], and likewise for ΛQ(q)(X). Note that a symmetric function is Schur positive if and
only if it is the Frobenius image of a (bi-)graded Sn-module.

Several natural examples of bigraded Sn-modules, which arise naturally in the theory of
Macdonald polymonials, begin with the diagonal action of Sn on C[x1, . . . , xn, y1, . . . , yn].
In the diagonal action, a permutation π sends a function f(x1, . . . , xn, y1, . . . , yn) to

f(xπ1 , . . . , xπn , yπ1 , . . . , yπn),

simultaneously permuting the two sets of variables. The quotient of this polynomial ring by
the ideal S+ of positive-degree invariants is called the ring of diagonal harmonics, written

DHn = C[x1, . . . , xn, y1, . . . , yn]/S+.

This quotient ring inherits an Sn-action from the diagonal action, and has been the subject
of much recent study in algebra and combinatorics (see [16]).

Finally, we will require the notation of plethystic substitution , an operation on sym-
metric functions defined as follows. Let A = A(a1, a2, . . .) ∈ Z[[a1, a2, . . .]] be a formal sum of
monomials with integer coefficients in the variables ai. For a power sum symmetric function
pk = xk1 + xk2 + xk3 + · · · , the plethystic substitution of A into pk is the expression

pk[A] = A(ak1, a
k
2, . . .).

For a general symmetric function f , express f = f(p1, p2, . . .) as a polynomial in the power
sum symmetric functions pk. Then

f [A] = f(p1[A], p2[A], p3[A], . . .).



CHAPTER 2. BACKGROUND 21

Plethystic substitution can be used to define a Hopf algebra structure on the ring of sym-
metric functions [7] with the power sum symmetric functions as the primitive elements.
Certain plethystic substitutions, in particular the substitutions f [(1− t)X] and f [ X

1−t ] where
X = x1 + x2 + · · · have important representation theoretic meanings (see [20], Proposition
3.3.1).

2.7 Hall-Littlewood polynomials

The Hall-Littlewood polynomials are t-analogs of certain classical bases of the space of
symmetric functions. The original definition of the Hall-Littlewood polynomials is as the
collection of polynomials Pλ(X; t) in n variables X = {x1, . . . , xn} given by

Pλ(x1, . . . , xn; t) =
1∏

i(mi)t!

∑
π∈Sn

π

(
xλ11 x

λ2
2 · · ·xλkk

∏
i<j

xi − txj
xi − xj

)
, (2.3)

where k = `(λ), mi is the number of i’s that occur in λ, and, for any positive integer m,

(m)t! = (1)(1 + t)(1 + t+ t2) · · · (1 + t+ t2 + · · ·+ tm−1)

is the t-factorial . One can show that the Hall-Littlewood polynomials are restriction-
compatible:

P (x1, . . . , xn−1, 0; t) = P (x1, . . . , xn−1; t),

and we can therefore extend the Hall-Littlewood polynomials to the limiting symmetric
functions P (X; t) in an infinite collection of variables X = {x1, x2, . . .}. (For this result and
the basic facts about Hall-Littlewood polynomials that follow, see Macdonald’s book [30],
Chapter III.)

The Hall-Littlewood polynomials have the following specializations:

Pλ(X; 0) = sλ, Pλ(X; 1) = mλ, P(1r)(X; t) = er.

The polynomials Pλ form an orthogonal basis of ΛQ(t) with respect to a symmetric t-analog
of the Hall inner product given by

〈f, g〉t =

〈
f, g

[
X

1− t

]〉
.

Indeed, if we define bλ(t) =
∏

(mi)t!(1− t)mi and set Qλ(X; t) = bλ(t)Pλ(X; t), then

〈Pλ(X; t), Qµ(X; t)〉t = δλµ.

Since the Pλ’s form a basis, we can ask for the transition matrix between the Pλ’s and
sλ’s. It turns out that

sλ =
∑

Kλµ(t)Pµ(X; t)
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where Kλµ(t) is a polynomial in t with positive integer coefficients, giving a t-analog of the
Kostka numbers Kλµ that arise from the specialization t = 1. In fact, there is a statistic on
semistandard Young tableaux called charge , for which

Kλµ(t) =
∑

T∈SSYT(λ,µ)

tcharge(T ),

so in fact it is the t-series of a certain combinatorial statistic on the set SSYT(λ, µ) of
semistandard Young tableaux of shape λ and content µ.

Definition 2.7.1. The charge of a word w with partition content µ is the quantity

charge(w) = n(µ)− cc(w)

where
n(µ) =

∑
(i− 1)µi

is the maximum value of the cocharge on W µ
n . The charge of a semistandard Young tableau

T is defined to be the charge of its reading word.

It is not difficult to transform this equation into a statement about Schur positivity
of certain “transformed” Hall-Littlewood polynomials. In particular, define Hµ(X; t) =
Qµ(

[
X
1−t

]
; t). Then

〈Hµ(X; t), sλ〉 = 〈sλ, Hµ(X; t)〉
= 〈sλ, Qµ(X; t)〉t
= 〈Qµ(X; t),

∑
ν

Kλν(t)Pν(X; t)〉

= Kλµ(t).

Thus Hµ(X; t) =
∑

λKλµ(t)sλ, and so the polynomials Hµ are Schur positive. In fact,
they arise naturally as the Frobenius image of a graded Sn-module when we make the further
transformation to reverse the grading, by defining

H̃µ(X; t) = tn(µ)Hµ(X; t−1).

(Note that n(µ) is the maximum value of the charge statistic on SSYT(λ, µ).) We likewise
define

K̃λµ(t) = tn(µ)Kλµ(t),

and define the cocharge of a semistandard Young tableau T to be cc(T ) = n(µ)−charge(T ).
We call these polynomials the (transformed) t-Kostka polynomials.

The symmetric functions H̃µ(X; t) are the Frobenius image of the Garsia-Procesi mod-
ules Rµ. These graded Sn-modules are the cohomology rings of the fibers of the Springer
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resolution (see [9] and [37]), and a concrete algebraic description was given in [13]. In par-
ticular, Garsia and Procesi consider the polynomial ring Q[x1, . . . , xn] and define the ideal

Iµ = (er(S) | k ≥ r > k − dk(µ), |S| = k, S ⊂ {x1, . . . , xn})

where
dk(µ) = µ∗1 + · · ·+ µ∗k

is the sum of the first k columns of µ, and where er(S) is the “partial” elementary symmetric
function in the variables in the set S. Then if

Rµ = Q[x1, . . . , xn]/Iµ,

the action of Sn on the variables gives rise to an action on Rµ and we have

Frobt(Rµ) = H̃µ(X; t).

In [13], the authors recursively define a set of monomials B(µ), and show they form a
basis of Rµ. To state this recursion we require two more definitions, which follow the notation
in [13].

Definition 2.7.2. Given a partition µ, define µ(i) to be the partition formed by removing
the corner square from the column ai containing the last square in the i-th row µi.

Definition 2.7.3. Given a set of monomials C and a monomial m, we write m · C to denote
the set of all monomials of the form m · x where x ∈ C.

The following recursion defines the sets B(µ).

Definition 2.7.4. The sets B(µ) are defined by B((1)) = {1} and the recursion

B(µ) =

µ∗1⊔
i−1

xi−1n · B(µ(i)).

We refer to these sets as the Garsia-Procesi module bases.

2.8 Macdonald polynomials and a symmetry problem

The Macdonald polynomials are a two-parameter analog of certain bases of symmetric
functions that specialize to the Hall-Littlewood polynomials. They were originally defined as
the eigenvectors Pλ(X; q, t) of certain operators on the ring ΛQ(q,t)(X). They are constructed
in such a way that they are the unique collection of functions satisfying certain orthogonality
and triangularity conditions with respect to the q, t-Hall inner product defined by

〈f, g〉q,t =

〈
f, g

[
1− q
1− tX

]〉
.
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Definition 2.8.1. The polynomials Pλ(X; q, t) ∈ ΛQ(q,t)(X) are the unique collection of
polynomials satisfying:

• Pλ =
∑

µ≤λ aλµ(q, t)mµ where aλλ = 1, and

• 〈Pλ, Pµ〉 = 0 if λ 6= µ.

While the Macdonald polynomials do not have a known formula analogous to Equation
(2.3), one can show that they have the following specializations:

Pλ(X; t, t) = sλ, Pλ(X; 0, t) = Pλ(X; t), Pλ(X; 1, t) = eλ∗ , P(1r)(X; q, t) = er.

Macdonald defined the “integral form” of Pλ, written Jλ, to be a q, t-scalar multiple of
Pλ and conjectured that its coefficients with respect to certain other bases are polynomials
in q and t, rather than simply being rational functions. In particular, define

Jλ(X; q, t) = cλ(q, t)Pλ(X; q, t)

where
cλ(q, t) =

∏
s∈λ

(1− qa(s)tl(s)+1).

(Recall that a(s) and l(s) are the lengths of the arm and leg of the square s respectively.)
Let Kλµ(q, t) be the coefficients of Jµ in terms of the basis sλ[X/(1− t)], so that we have

Jµ(X; q, t) =
∑
λ

Kλµ(q, t)sλ

[
X

1− t

]
.

The Macdonald positivity conjecture , in its original form, is that the coefficients
Kλµ(q, t) are elements of Z+[q, t]. As in the Hall-Littlewood case, it is convenient to make a
transformation so that this conjecture can be expressed as a problem of Schur positivity. In
particular, let

Hµ(X; q, t) = Jµ[
X

1− t ; q, t]

and let
H̃µ = tn(µ)Hµ(X; q, t−1).

Also define the q, t-Kostka polynomials as K̃λµ(q, t) = tn(µ)Kλµ(q, t−1). Then

H̃µ(X; q, t) =
∑

K̃λµ(q, t)sλ,

and the Macdonald positivity conjecture can be rephrased as the claim that K̃λµ(q, t) are
polynomials with positive integer coefficients (i.e., that the Hµ’s are Schur positive). The

transformed Macdonald polynomials H̃µ(X; q, t) are uniquely determined by the somewhat
more symmetric orthogonality relations
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• H̃µ[(1− q)X; q, t] ∈ Q(q, t){sλ : λ ≥ µ}

• H̃µ[(1− t)X; q, t] ∈ Q(q, t){sλ : λ ≥ µ∗}

• H̃µ[1; q, t] = 1.

The Macdonald positivity conjecture was first proved by Haiman [22], who showed

that the polynomials H̃µ(X; q, t) are the Frobenius characteristics of certain bi-graded Sn-
modules called the Garsia-Haiman modules. For a partition µ, choose any ordering
(a1, b1), (a2, b2), . . . of its cells, and define

∆µ = det(x
aj
i y

bj
i ).

Notice that ∆µ is, up to sign, independent of the choice of ordering of the cells. Then, define

Rµ = C[x1, . . . , xn, y1, . . . , yn]/Jµ

where Jµ is the ideal of all polynomials f(x1, . . . , xn, y1, . . . , yn) whose associated differential
operator ∂f = f(∂xi, ∂yj) kills ∆µ. Then Rµ inherits the structure of a bigraded Sn-module
from the diagonal action on C[x1, . . . , xn, y1, . . . , yn].

As mentioned in the introduction, it was conjectured in [12] that Frobq,t(Rµ) = H̃µ(X; q, t),
and the authors reduced the problem to showing that Rµ has dimension n! as a C-vector
space. This became known as the n! conjecture . In order to prove the n! conjecture,
Haiman established a link between the symmetric functions H̃µ(X; q, t) and the geometry
of the Hilbert scheme of n points in the plane. [22] The Hilbert scheme Hilbn(C2) is a
moduli space which, as a set, consists of all ideals I ⊂ C[x, y] for which dimC C[x, y]/I = n.

A “generic” element of the Hilbert scheme,

I =
⋂

(x− xi, y − yi),

corresponds to a set of n distinct points (xi, yi) ∈ C2. Haiman considered the fixed points of
the action of the torus (C∗)2 on Hilbn(C2) (inherited from the natural multiplication action
of (C∗)2 on C2). These fixed points are precisely the monomial ideals Iµ generated by the
monomials xiyj such that (i, j) is not a square of µ.

y3 xy3

x2y2

x3y

x31 x x2

y xy x2y

y2 xy2
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There is a further construction [20] known as the isospectral Hilbert scheme , written
Xn. This can be thought of as the moduli space of ideals I ∈ Hilbn(C2) together with an
ordering of the n points of the zero locus of I, counted with multiplicity. In particular, there
is a natural map ρ : Xn → Hilbn(C2) such that the following diagram commutes:

Xn
- C2n

Hilbn(C2)

ρ

?
- C2n/Sn

?

(In the diagram, the horizontal arrows take a point of the Hilbert scheme or isospectral
Hilbert scheme to its corresponding list of points or set of points respectively.) Finally, let
Hµ = (ρ∗OX)Iµ . By showing that the isospectral Hilbert scheme Xn is Cohen-Macaulay and
Gorenstein, Haiman proved that

Hµ
∼= Rµ = C[x1, . . . , xn, y1, . . . , yn]/Jµ,

and that this space has dimension n!. [22]
There is no known generalization of the cocharge formula for the coefficients of the form

K̃λµ(q, t) =
∑
T

qs(T )tr(T ),

where T ranges over an appropriate set of Young tableaux and r and s are combinatorial
statistics. This remains an important open problem in the theory of Macdonald polynomials.

Despite this mystery, a different combinatorial formula for the transformed Macdonald
polynomials H̃µ has been found, and appeared in the literature in [17] in 2004. The authors
prove that

H̃µ(x; q, t) =
∑
σ

qinv(σ)tmaj(σ)xσ, (2.4)

where the sum ranges over all fillings σ of the diagram of µ with positive integers, and xσ is
the monomial xm1

1 xm2
2 · · · where mi is the number of times the letter i occurs in σ. Here inv

and maj are the statistics on fillings defined in Section 2.5.
Since this combinatorial formula for H̃µ(x; q, t) is an expansion in terms of monomials

rather than Schur functions, it does not give an immediate answer to the Macdonald posi-
tivity conjecture. Indeed, it perhaps raises more questions than it answers. For one, there is
a well-known q, t-symmetry relation for the transformed Macdonald polynomials H̃µ(x; q, t),
namely

H̃µ(x; q, t) = H̃µ∗(x; t, q).

This is obvious from the triangularity conditions that define H̃µ, and is also clear from
Haiman’s geometric interpretation. [22] When combined with the combinatorial formula,
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however, we obtain a remarkable generating function identity:∑
σ:µ→Z+

qinv(σ)tmaj(σ)xσ =
∑

ρ:µ∗→Z+

qmaj(ρ)tinv(ρ)xρ. (2.5)

Setting t = 1 and µ = (n) and taking the coefficient of x1 · · ·xn on both sides, this
reduces to ∑

w∈Sn

qinv(w) =
∑
w∈Sn

qmaj(w).

This is precisely the equation describing the equidistribution of the Mahonian statistics inv
and maj on permutations, which we discussed in Sections 2.2 and 2.3

In light of this, it is natural to ask if there is an elementary combinatorial proof of (2.5),
in the sense of the problem stated in the introduction. We now restate this problem below
using the notation introduced in Section 2.1.

Problem 1.0.1. Find a natural isomorphism of weighted sets

ϕ : (F ; inv,maj)→ (F ; maj, inv)

which interchanges inv and maj and sends a partition shape to its conjugate. That is, for
any a, b, µ, α, the map ϕ restricts to a bijection

ϕ : Fαµ |inv=a,maj=b → Fαµ∗|inv=b,maj=a.

Remark 2.8.2. In [17], the authors give a combinatorial proof of the fact that the poly-

nomials H̃µ are symmetric in the variables xi. We will make use of this fact repeatedly,
rearranging the entries of α as needed. In other words, to solve Problem 1.0.1, it suffices to
find a map ϕ that restricts to bijections Fαµ |inv=a,maj=b → F r(α)µ∗ |inv=b,maj=a where r is some
bijective map that rearranges the entries of α.
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Chapter 3

The inv statistic for Hall-Littlewood
polynomials

We now turn to the specialization of Equation (2.5) at q = 0. The symmetry relation
becomes

H̃µ(x; 0, t) = H̃µ∗(x; t, 0),

which is a symmetry relation between the transformed Hall-Littlewood polynomials H̃µ(x; t) :=

H̃µ(x; 0, t). In this case the equation reduces to becomes∑
σ:µ→Z+

inv(σ)=0

tmaj(σ)xσ =
∑

ρ:µ∗→Z+

maj(ρ)=0

tinv(ρ)xρ. (3.1)

Combinatorially, we would like to find natural morphisms

ϕ : (Fαµ |inv=0; maj) → (F r(α)µ∗ |maj=0; inv)

of weighted sets. For the bijection r(α), we will use the reverse map of Definition 3.2.2
below.

As noted in Section 2.5, the left hand side above can alternatively be described in terms
of the cocharge statistic on words. In this chapter we consider the right hand side, and study
fillings ρ having maj(ρ) = 0, equipped with the inv statistic.

3.1 Inversion words and diagrams

In analogy with the cocharge word defined in [17], for fillings ρ having maj(ρ) = 0, we
can form an associated inversion word and describe a statistic on the inversion word that
measures inv(ρ) in the case that maj(ρ) = 0.

Definition 3.1.1. Let ρ be a filling of shape µ having maj = 0. We define the inversion
word of ρ as follows. Starting with the smallest value that appears in the filling, write the
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column numbers of the entries with that value as they appear in reading order, and then
proceed with the second smallest entry and so on.

For instance, the filling:

5 3 5 2

4 3 4 1

2 2 4

1

has inversion word 141242231313.
In order to compute inv(σ) given only its inversion word, we will use a visual represen-

tation of the inversion word, which we call a diagram.

Definition 3.1.2. Fix a linearly ordered finite multiset A, with elements a1 ≤ a2 ≤ · · · ≤ an.
The diagram a function f : A→ Z+ is the plot of the function with respect to the ordering
on A. We say that the diagram has shape µ if |f−1(i)| = µi for each i.

The diagrams we will be using, defined below, are essentially the plot of the inversion
word, considered as a function on a multiset.

Definition 3.1.3. Let ρ be a filling of µ∗ having maj(ρ) = 0, and let w be the inversion word
of ρ. Let A be the multiset consisting of the entries of ρ, ordered from least to greatest and
in reading order in the case of a tie. Let f : A → Z+ be the function given by f(ai) = wi.
We define InvPlot(ρ) to be the diagram of the function f , whose plot has µj dots in the j-th
row.

Notice that the InvPlot of a filling of shape µ∗ has shape µ, the conjugate shape. For
instance, the tableau

3 4 2

2 4

2 2

1

has maj = 0, and its inversion word is 11213122. Its plot is as follows.

1 2 2 2 2 3 4 4
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To compute the number of inversions, we define the inversion labeling of a diagram
to be the result of labeling each row of dots µi in the diagram with the numbers 1, 2, . . . , µi
from right to left:

4 3
3

2

1

1
2 1

1 2 2 2 2 3 4 4

Finally, an inversion in the diagram of a function f : A→ Z+, labeled as above, is a pair
of entries a < b in the ordered multiset A for which either:

I. The dots above a and b have the same label and f(a) > f(b), or

II. The dot in position a is labeled i and the dot in position b is labeled i + 1, and
f(b) > f(a).

So there are 3 inversions in the diagram above, two of type I and one of type II:

4 3
3

2

1

1
2 1

1 2 2 2 2 3 4 4

For fillings σ with maj(σ) = 0, there are no descents, and so the number of inversions in
InvPlot(σ) is equal to inv(σ). In particular, type I and II inversions correspond to attacking
pairs in the same row or on adjacent rows, respectively.

Remark 3.1.4. The type I and II inversions also correspond to the two types of inversions
used to define the dinv statistic on parking functions. Indeed, this was the original motivation
for the full definition of the inv statistic. [15]

We now classify the types of diagrams that arise as the InvPlot of a filling.

Definition 3.1.5. A consecutive subsequence is in inversion-friendly order if, when
each row is labeled from right to left as above, all dots of label i+1 in the subsequence occur
before the dots of label i for all i, and the dots of any given label appear in increasing order
from bottom to top.

An example of an inversion-friendly subsequence is shown below.

5

5

4
4

4
3 2

2
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It is easy to check that, in the plot of any filling ρ having maj(ρ) = 0, every subsequence
above a fixed letter of the alphabet A is in inversion-friendly order. We claim that the
converse is true as well, namely, that every diagram having all such subsequences in inversion-
friendly order corresponds to a unique Young diagram filling ρ having maj(ρ) = 0.

Definition 3.1.6. A diagram is of inversion word type if every subsequence determined
by a fixed letter of A is in inversion-friendly order.

We let IDµ,A the set of all diagrams of shape µ of inversion word type over A. We equip
IDµ,A with its inv statistic to make it into a weighted set.

Proposition 3.1.7. Let µ be a partition of n, and let A be a multiset of n positive integers
with content α. The map InvPlot is an isomorphism of weighted sets

InvPlot : (Fαµ∗|maj=0; inv)→ (IDµ,A; inv).

Proof. As noted above, this is a map of sets that preserves the inv statistic since there are
no descents. To show it is bijective, we construct its inverse.

Let D be an arbitrary diagram in IDµ,A, and let f : A→ Z+ be the corresponding map.
For any a ∈ A let `(a) be the label on the dot at height f(a). Then let ρ be the filling of
shape µ∗ in which a ∈ A is placed in the square in column f(a) from the left, and height
`(a) from the bottom. By the definition of InvPlot, we have that InvPlot(ρ) = D, and
furthermore if D = InvPlot(σ) then ρ = σ. Thus the map sending D to ρ is the inverse of
InvPlot.

We will show in Section 3.4 that the inversion-friendly diagrams are in weight-preserving
bijection with a certain generalization of Carlitz codes, thereby generalizing the map invcode
of the Carlitz bijection.

There is another natural question that arises from this line of inquiry. One can show the
Schur-positivity of the Hall-Littlewood polynomials directly from the t = 0 specialization
of the combinatorial formula for Macdonald polynomials, as done in [17] via the cocharge
word construction. It would be useful to do the same from the q = 0 side, via the inversion
word construction. This may allow us to obtain a different statistic on semistandard Young
tableaux that also describes the Kostka polynomials, in the following sense.

Problem 3.1.8. Construct a map f from IDµ,A to the set S of pairs (P,Q) of semistandard

Young tableaux of the same shape such that Q has entries A, and a natural statistic ĩnv on
semistandard Young tableaux such that if f(W ) = (P,Q) then inv(W ) = ĩnv(P ).

In the t = 0 specialization where the statistics are maj and cocharge, the map f is simply
the RSK correspondence (see [17]). However, the inv statistic on inversion words is not
invariant under Knuth equivalence, and so the RSK correspondence would not suffice for
Problem 3.1.8.



CHAPTER 3. THE inv STATISTIC FOR HALL-LITTLEWOOD POLYNOMIALS 32

A solution to this problem would give rise to a Schur expansion for the Hall-Littlwood
polynomials of the form

H̃(X; t) =
∑
λ

 ∑
T∈SSYT(λ,µ)

tĩnv(T )

 sλ,

giving us an alternative expansion of the Kostka polynomials as K̃λµ(t) =
∑

T∈SSYT(λ,µ) t
ĩnv(T ).

It would therefore be of interest to try to find a statistic ĩnv that satisfies the conjecture and
which is easier or faster to compute than the rather unwieldy cocharge statistic.

3.2 The Carlitz bijection on words

Notice that the Carlitz bijection gives rise to a bijection φ satisfying Problem 1.0.1 for one-
column shapes µ = (1, 1, . . . , 1) having content α = (1, 1, . . . , 1). Indeed, inv(σ) = 0 for any
filling σ of a one-column shape µ, and maj(ρ) = 0 for any filling ρ of its one-row conjugate
µ∗. Since maj(σ) and inv(ρ) in this case are the same as maj and inv of their reading words,
this determines a bijection for distinct entries (α = (1, 1, . . . , 1).)

In order to generalize Carlitz codes to the general Hall-Littlewood case, we now generalize
the Carlitz bijection to words, i.e. fillings with any content α for one-column shapes µ.

Definition 3.2.1. Let A = (aα1
1 , a

α2
2 , . . . , a

αk
k ) be any finite multiset of size n, with an

ordering “<” such that a1 < a2 < · · · < ak, and let µ be a partition of n. We say that a
word c of length n is A-weakly increasing if every subword of the form

cα1+···+αi , cα1+···αi+1, . . . cα1+···+αi+αi+1−1

is weakly increasing.

For instance, if A = {1, 1, 2, 3, 3, 3, 4, 4}, ordered by magnitude, then the word 23711213
is A-weakly increasing, since the subwords 23, 7, 112, and 13, corresponding to each letter
of A, are weakly increasing.

We also will make use of Macdonald symmetry in the variables xi by defining a weight-
preserving bijection on alphabets.

Definition 3.2.2. The reverse of the content α = (α1, . . . , αM) is the tuple

r(α) = (αM , αM−1, . . . , α1).

In terms of alphabets, let A be a finite multiset of positive integers with maximum element
M . The content of A is α if αi is the multiplicity of i in A. The complement of A,
denoted A, is the multiset consisting of the elements M + 1 − a for all a ∈ A. Notice that
the content of A is r(α).

If A is an ordered alphabet, then its complement inherits this ordering: if a < b in A
then a < b in A.
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For instance, the complement of the multiset

{1, 2, 2, 2, 2, 3, 4, 4}

is {4, 3, 3, 3, 3, 2, 1, 1}, and correspondingly, r(1, 4, 1, 2) = (2, 1, 4, 1).
We generalize Carlitz’s codes as follows.

Definition 3.2.3. Let C(1n),A denote the subset of Cn consisting of all Carlitz codes of length
n which are A-weakly increasing. This subset inherits the Σ statistic from Cn.

We now can define bijections

invcode : (Fα(1n); inv)→ (C(1n),A; Σ)

and
majcode : (F r(α)(n) ; maj)→ (C(1n),A; Σ).

Definition 3.2.4. Let w be a word consisting of the letters in the ordered alphabet A = a1 ≤
· · · ≤ an (corresponding to a filling of a horizontal shape), with ties among the letters broken
in the order they appear in w. The inversion code of w is the code invcode(w) = c1 · · · cn
where ci is the number of inversions having ai as the smaller entry of the inversion.

For example, the inversion code of the filling

3 2 4 1 3 2

is 313010, since the 1 is the smaller entry of 3 inversions, the first 2 is the smaller entry of 1
inversion, the second 2 is the smaller entry of 3 inversions, and so on.

Proposition 3.2.5. The map invcode is an isomorphism of weighted sets

invcode : Fα(1n) → C(1n),A.

The above proposition will be implied by Proposition 3.4.3, and so we omit the proof.
To define the map majcode, we first require a standardization rule for fillings of columns.

Definition 3.2.6. Let σ be any filling of a column of height n with positive integers. We
define the standardization labeling on repeated entries as follows.

1. Let i be a letter that occurs k times in σ. Remove any entries larger than i to form a
smaller column σ′.

2. Find the bottommost i that is either on the very bottom of σ′ or has entries a and b
above and below it with a > b. Assign this i a label of k and remove it. Repeat this
process, labeling the next i by k − 1 and so on, until there are no i’s left that satisfy
this condition.
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3. Finally, remove and label any remaining i’s in order from top to bottom, decreasing
the label by one each time.

We define Standardize(σ) as the unique column filling using labels 1, 2, . . . , n that respects
the ordering of the entries of σ and breaks ties according to the standardization labeling.

Proposition 3.2.7. For any column filling σ with alphabet A, let ρ = Standardize(σ). Then
ρ and σ have the same major index, and majcode(ρ) is A-weakly increasing.

The key to the proof is the following technical lemma. Define a consecutive block of n’s
in a filling to be a maximal consecutive run of entries in a column which are all filled with
the letter n.

Lemma 3.2.8. Given a filling of a one-column shape µ = (1r) having largest entry n, there
is a unique way of ordering the n’s in the filling, say n1, . . . , nαn, such that the following two
conditions are satisfied.

1. Any consecutive block of n’s in the column appears in the sequence in order from bottom
to top, and

2. If we remove n1, . . . , nαn in that order, and let di be the amount that the major index
of the column decreases at the i-th step, then the sequence d1, d2, . . . , dαn is weakly
increasing.

Proof. We first show (1) that there is a unique choice of entry labeled n at each step which
minimizes d and is at the bottom of a consecutive block, and then that (2) the resulting
sequence di is weakly increasing. For any entry x, we define ψx(σ) to be the column formed
by removing the entry x from σ.

To prove (1), consider the bottommost entries of each consecutive block of n’s. We wish to
show that no two of these n’s have the same value of d = maj(σ)−maj(ψn(σ)) upon removal.
So, suppose there is an n in the i-th square from the top and an n in the j-th square from
the top, each at the bottom of their blocks, and call them ni and nj to distinguish them.
Assume for contradiction that removing either of the n’s results in a decrease by d of the
major index.

Suppose an entry n has an entry a above it and b below. In ψn(σ), a and b are adjacent,
and they can either form a descent or not. If they do, then d = maj(σ)−maj(ψ(σ)) is equal
to the number of descents below and including that n, and if they do not, then d is equal to
the sum of the number of descents strictly below the n plus the position of the n from the
top. We consider several cases based on the two possibilities for each of ni and nj.

If either ni or nj is at the very bottom of the filling, then removing that entry results in
d = 0, and the other does not, so we may assume neither of ni or nj is in the bottom row.

Case 1: Each of ni and nj forms a new descent upon removal, in ψni(σ) and ψnj(σ).
Assume without loss of generality that i < j, and let t be the number of descents weakly
below position j (meaning its position from the top is greater than or equal to j) and s the
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number of descents weakly below position i. Then since the ni is at the bottom of its block,
it is a descent, so s > t. Since s and t are the values of d for the removal of the two n’s, we
have a contradiction.

Case 2: Neither ni nor nj, upon removal, forms a new descent. In this case, assume
without loss of generality that i < j and let t be the number of descents strictly below
position j. Let r be the number of descents strictly between rows i and j. Since the n’s
are at the bottom of their blocks, the two n’s are descents as well, so the values of d upon
removing the n’s are i+ r + t+ 1 and j + t. By our assumption, these are equal, and so we
have

i+ r + 1 + t = j + t

j − i− 1 = r

But j − i − 1 counts the number of squares strictly between positions i and j. Since r is
the number of squares in this set which are descents, this means that every square between
i and j must be a descent. But the square in position j has the highest possible label n, so
the square just before it (above it) cannot be a descent. Hence we have a contradiction.

Case 3: One of the two n’s, say the one in position i, forms a new descent upon removal,
and the other does not. Then in this case defining t as the number of descents strictly below
position j and s the number of descents weakly below position i, the two values of d are j+ t
and s. So j + t = s by our assumption, and so j = s− t, which implies s− t > 0, or s > t.
Thus, necessarily i < j.

Now, s − t is the number of descents between positions i and j, inclusive. Since i ≥ 1
there are at most j such squares, and the one preceding j cannot be a descent since there
is an n in the j-th position. Thus this quantity s − t is strictly less than j, but we showed
before that j = s− t, a contradiction. This completes the proof of claim (1).

For claim (2), consider any two consecutive d values in this process, say d1 and d2 for
simplicity, that correspond to the largest value n. Let n1 and n2 be the corresponding copies
of n. We wish to show that d1 ≤ d2.

First, notice that if n1 and n2 were in the same consecutive block before removal, we
have d1 = d2 unless n2 is a block of length 1 in ψ(σ), in which case d2 ≥ d1.

So we may assume that n1 and n2 were in different consecutive blocks before removal.
In this case the removal of n1 may only change the value of d on removing n2 by at most
one, namely by either shifting it back by one position if n1 is above n2 in the column,
or by removing one descent from below n2, if n1 is below n2. Thus d2 = maj(ψn1(σ)) −
maj(ψn2(ψn1(σ))) is at most one less than maj(σ) − maj(ψn2(σ)). Since n1 was chosen so
as to minimize d1, and we showed in our proof of (1) that the choice is unique, this implies
that d2 + 1 > d1. Thus d2 ≥ d1, as desired.

This completes the proof of (2).

Proposition 3.2.7 now follows from the proof of the above lemma.
We now can define the map majcode on words, that is, for one-column fillings.



CHAPTER 3. THE inv STATISTIC FOR HALL-LITTLEWOOD POLYNOMIALS 36

Definition 3.2.9. Let σ be any filling of a column shape µ = (1r). We define majcode(σ) =
majcode(Standardize(σ)), where majcode of a standard filling is defined to be the majcode
of its reading word (which is a permutation).

Example 3.2.10. Let σ be the one-column filling whose reading word is 6434666251664,
the standardization labeling on the 6’s is shown by the subscripts:

62 4 3 4 63 64 65 2 5 1 61 66 4

Since this one-column shape has size 13, the filling Standardize(σ) will have the 6’s
relabeled as the numbers from 8 to 13 according to the subscripts above:

9 4 3 4 10 11 12 2 5 1 8 13 4

We then remove the 13, 12, . . . , 8 in order. This results in a sequence of difference values
1, 3, 3, 3, 5, 7, which is weakly increasing.

We are left with a column with reading word 4342514, in which there is only one 5, so
Standardize changes that to a 7. We remove this to obtain a difference of 1 in the major
index. We are left with 434214, in which the 4’s are standardized as follows:

413422143 → 435216.

Removing these in order from 6 down to 1 decreases the major index by 0, 2, 3, 2, 1, 0, re-
spectively. Therefore,

majcode(σ) = 1, 3, 3, 3, 5, 7, 1, 0, 2, 3, 2, 1, 0.

Note that this sequence is {6, 6, 6, 6, 6, 6, 5, 4, 4, 4, 3, 2, 1}-weakly increasing.

Proposition 3.2.11. The map majcode is a weighted set isomorphism F r(α)(1n) → C(1n),A for

any alphabet A with content α, and any one-column partition shape (1n).

Proof. Carlitz’s work shows that majcode is an isomorphism in the case that α = (1, 1, . . . , 1),
i.e. A has one of each letter from 1 to n. In the case of repeated entries, we note that
majcode is still injective. Indeed, given a code corresponding to a filling, there is a unique
place to insert the next number at each step - by applying the Standardize map, using
Carlitz’s bijection, and then un-standardizing in the unique way so that the order of entries
is preserved and the resulting alphabet is A.

Now, notice that by our definition of majcode and Lemma 3.2.8, the codes we get are
A-weakly increasing. We claim that they are also Carlitz codes: at the i-th step, there are
n − i + 1 letters remaining, and the difference di is either the position of the letter we’re
removing plus the number of descents strictly below it, or the number of descents weakly
below it. Therefore, the maximum value of di is n− i+ 1, and so d1d2 · · · dn is a Carlitz code
and is A-weakly increasing. It follows that majcode is an injective morphism of weighted
sets F r(α)(1n) |inv=0 → C(1n),A.

Finally, notice that the two sets have the same cardinality: each has cardinality
(
n
α

)
where

α is the content of the alphabet A. It follows that majcode is bijective, as desired.
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3.3 Generalized Carlitz codes

In the context of Hall-Littlewood symmetry, we can think of the Carlitz bijection as a solution
to the case in which µ = (1n) is a straight shape with one column, filled with distinct entries.
Thus, we wish to generalize the notion of a Carlitz code to fillings of arbitrary shapes having
inv or maj equal to 0, using arbitrary alphabets.

Our generalization is motivated by the monomial basis of the Garsia-Procesi modules in
[13], which are closely connected to the cocharge (maj) statistic. We define a generalized
Carlitz code as follows.

Definition 3.3.1. A word having letters in {0, 1, 2, . . .} is Yamanouchi (also often called
lattice or ballot) if every suffix contains at least as many i’s as i+ 1’s for all i ≥ 0.

A word w has content α = (α1, . . . , αk) if exactly αi of the entries of w are equal to
i − 1 for each i. We also sometimes say it has content A where A is the multiset of letters
of w.

Finally, a word w = w1 · · ·wn is µ-sub-Yamanouchi , or µ-Carlitz , if there exists a
Yamanouchi word v = v1 · · · vn of content µ such that wi < vi for all i.

Example 3.3.2. The sub-Yamanouchi words for shape µ = (1, 1, 1, . . . , 1) are precisely the
classical Carlitz codes.

We will see that the µ-sub-Yamanouchi words are the correct analog of Carlitz codes in
the case that our Young diagram fillings have distinct entries. However, in general we require
the following more precise definition.

Definition 3.3.3. We define Cµ,A to be the collection of all µ-sub-Yamanouchi codes which
are A-weakly increasing (see Definition 3.2.1). We call such codes generalized Carlitz
codes , and we equip this collection with the statistic Σ : Cµ,A → Z by Σ(c) =

∑
ci, forming

a weighted set (Cµ,A; Σ).

We now introduce the concept of the monomial of a code. The next three definitions are
compatible with the notation in [13].

Definition 3.3.4. Fix variables x1, x2, . . .. For any finite code c of length n, define its
monomial to be

xc = xc1n x
c2
n−1 · · ·xcn1 .

Also let CA(µ) be the set of all monomials xc of µ-sub-Yamanouchi words c that are A-weakly
increasing.

In [13], the authors define similar sets of monomials B(µ), which form bases of the modules
Rµ that arise naturally in the study of the Hall-Littlewood polynomials. We will see that in
the case A = {1, 2, . . . , n}, we have CA(µ) = B(µ), by showing that the sets CA(µ) satisfy
a generalized version of the recursion in [13]. To state this recursion we require two more
definitions, which follow the notation in [13].
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Definition 3.3.5. Given a partition µ, define µ(i) to be the partition formed by removing
the corner square from the column ai containing the last square in the i-th row µi.

Definition 3.3.6. Given a set of monomials C and a monomial m, we write m · C to denote
the set of all monomials of the form m · x where x ∈ C.

The following recursion defines the sets B(µ).

Definition 3.3.7. The sets B(µ) are defined by B((1)) = {1} and the recursion

B(µ) =

µ∗1⊔
i−1

xi−1n · B(µ(i)).

We refer to these sets as the Garsia-Procesi module bases.

We require one new definition in order to state our general recursion in the next propo-
sition.

Definition 3.3.8. Let A = {a1, a2, . . . , an} with a1 ≤ a2 ≤ · · · ≤ an be a multiset of positive

integers, and let λ be a partition of n−1. We define C(t)A (λ) to be the set of all monomials xd

of λ-sub-Yamanouchi words d1, . . . , dn−1 that are A \ {a1}-weakly increasing and if a1 = a2
then d1 ≥ t.

Proposition 3.3.9 (General Recursion). For any partition µ of n and any multiset of pos-
itive integers A = {a1, a2, . . . , an} with a1 ≤ a2 ≤ · · · ≤ an, we have

CA(µ) =

µ∗1⊔
i=1

xi−1n · C(i−1)A (µ(i)).

Before proving this proposition, we explore some of its basic consequences. Notice that
in the case A = {1, 2, . . . , n}, since there are no repeated entries, Proposition 3.3.9 reduces
to

C[n](µ) =

µ∗1⊔
i−1

xi−1n · C(µ(i)).

Since this is the same as the recursion given for the sets B(µ) described in the previous
section, and C{1}((1)) = {x1} = B((1)), we have the following corollary.

Corollary 3.3.10. If A = {1, 2, . . . , n}, we have CA(µ) = B(µ).

As noted in [13], we can now also enumerate the sets CA(µ) in the case A = {1, 2, . . . , n}.
For, in this case the simplified recursion gives

|CA(µ)| =
∑
i

|CA(µ(i))|
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with |C{1}((1))| = 1. But the multinomial coefficients
(
n
µ

)
satisfy

(
1
1

)
= 1 and the same

recursion: (
n

µ

)
=
∑
i

(
n

µi

)
.

Corollary 3.3.11. If A = {1, 2, . . . , n}, we have

|CA(µ)| =
(
n

µ

)
.

We now prove Proposition 3.3.9.

Proof. The sets forming the union on the right hand side are disjoint because the i-th set
consists only of monomials having xi−1n as their power of xn. We now show inclusion both
ways.

(⊆) Let xc ∈ CA(µ) where c = c1, . . . , cn is a µ-sub-Yamanouchi word which is A-weakly
increasing. Let i = c1 + 1, so that c1 = i− 1. Also let c′ = c2, . . . , cn. Notice that if a1 = a2
then c2 ≥ i− 1, and c′ is A \ {a1}-weakly increasing. Thus, to show xc ∈ xi−1C(i−1)A (µ(i)), we
just need to show that c′ is µ(i)-sub-Yamanouchi.

Since c is µ-sub-Yamanouchi, there exists a Yamanouchi word d having µi entries equal
to i − 1 for each i, for which xc|xd. Let t be the highest index such that µt+1 = µi. Then
µ(i) = (µ1, µ2, . . . , µt−1, · · · , µk). So, we wish to show that we can form a new µ-Yamanouchi
word b from d so that we still have xc|xb but b1 = t. This way c′ will be µ(i)-sub-Yamanouchi,
with respect to b′ = b2, . . . , bn.

We have µt+2 < µt+1 by our assumption defining t, so there are strictly more t’s than
t+ 1’s in d. Notice that this means we can move the leftmost t in d any number of spots to
the left without changing the fact that the word is Yamanouchi.

Also notice that d1 ≥ c1 = i−1. But since there are exactly as many i−1’s as i’s, i+1’s,
and so on up to t in d, we must in fact have d1 ≥ t, for otherwise the suffix d2, . . . , dn would
not satisfy the Yamanouchi property. So d1 ≥ t.

Now, let dr be the leftmost t in d. We form a subword of d as follows. Let d1 be the first
letter of our subword. Then let dp1 be the leftmost letter between d1 and dr with t ≤ dp1 ≤ dr,
if it exists. Then let dp2 be the first letter between dp1 and dr for which t ≤ dp2 ≤ dp1 , and
so on until we reach a point at which no such letter exists. We now have a subsequence of
letters d1, dp1 , dp2 , . . . , dpk , dr = t where dr is the leftmost t in d. We define b to be the word
formed from d by cyclically shifting this subsequence, replacing dpi with dpi−1

for all i > 1,
replacing dp1 with d1, and replacing d1 with dpk .

For instance, if µ = (4, 3, 3, 2, 2), i− 1 = 1, then t = 2, and we might have

c = 120412130010100

with
d = 430422130021100.
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Then the subword of d consists of those letters in boldface above, and we cyclically shift the
boldface letters to the right in their positions to form

b = 240432130021100,

which is still µ-Yamanouchi and still dominates c in the sense that xc|xb.
To verify that in general xc|xb, notice that c1 = i− 1 ≤ t, and since the other letters in

the subword decrease to the right, we have bi ≥ di for all i > 1. Thus each bi ≥ ci for all i,
and so xc|xb.

To show that b is still Yamanouchi, notice that to form b from d, we have moved the
leftmost t all the way to the left (which, we noted above, preserves the Yamanouchi property)
and moved each dpj to the right without crossing over any element having value dpj − 1 (for
otherwise our sequence dpj would have an extra element, a contradiction.) Thus we have not
changed the property of there being at least as many dpj − 1’s as dpj ’s in each suffix, and we
have not changed the property that there are at least as many dpj ’s as dpj +1’s in each suffix,
because we moved these elements to the right. The other Yamanouchi conditions remain
unchanged, since we are only moving the letters dpj . Thus b is Yamanouchi as well.

(⊇) For the other inclusion, let c = c1, . . . , cn be a word such that xc ∈ xi−1 · C(i)A (µ(i)).
Then c′ = c2, . . . , cn is µ(i)-sub-Yamanouchi, so there exists a word d′ = d2, . . . , dn which is
Yamanouchi of content µ(i) such that xc

′|xd′ . Let d1 = t where t is the highest index such
that µt+1 = µi. Then d = d1, . . . , dn is Yamanouchi of shape µ by the definition of µ(i),
and since c1 = i − 1, we have c1 ≤ t = d1. Thus xc|xd. Finally, note that if a1 = a2 in
A, then c2 ≥ i − 1 by the definition of C(i). Thus c is A-weakly increasing. It follows that
xc ∈ CA(µ).

3.4 Inversion Codes

We can now generalize the inversion code of a permutation to arbitrary fillings ρ with
maj(ρ) = 0.

Definition 3.4.1. Let ρ be a filling of µ∗ having maj(ρ) = 0. Order its entries by size with
ties broken in reading order to form a totally ordered alphabet A = {a1, . . . , an}. Then
its inversion code , denoted invcode(ρ), is the sequence c1 · · · cn whose i-th entry ci is the
number of attacking pairs having ai as its smaller entry.

Example 3.4.2. Consider the following tableau.

3 4 2

2 4

2 2

1
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There are three attacking pairs in this diagram: the 2 in the bottom row is attacked by
the 3 and 4 in its row, and the 3 is attacked by the 4 in the second row. When we order the
entries in reading order and record the number of larger numbers that attack it, we get the
following table.

Entries 1 2 2 2 2 3 4 4
Code 0 0 0 0 2 1 0 0

Therefore, the inversion code of the filling above is 00002100.

Theorem 3.4.3. The inversion code of any filling ρ ∈ Fαµ∗ is α-weakly increasing and µ-
sub-Yamanouchi. Moreover, the map

invcode : Fαµ∗ |maj=0→ Cµ,A

is an isomorphism of weighted sets.

To prove Theorem 3.4.3, we use the notation of inversion words and diagrams introduced
in Section 3.1. We wish to show that the inversion-friendly diagrams are in weight-preserving
bijection with generalized Carlitz codes.

Definition 3.4.4. The inversion code of a diagram w, denoted invcode(w), is the sequence
{ci} whose i-th entry ci is the number of inversion pairs of the form (w(i), b).

Example 3.4.5. The inversion code of the following diagram is 00002100.

4 3
3

2

1

1
2 1

1 2 2 2 2 3 4 4

Using Proposition 3.1.7, we can also define the inversion code of a filling ρ ∈ Fαµ |maj=0 to
be

invcode(ρ) := invcode(InvPlot(ρ)).

It is easy to see that this matches the definition of inversion code in Section 3.4. We can
therefore rephrase Theorem 3.4.3 as follows.

Theorem 3.4.6 (Theorem 3.4.3, rephrased). The inversion code of any diagram in IDµ,A is
α-weakly increasing and µ-sub-Yamanouchi. Moreover, the map

invcode : IDµ,A → Cµ,A

is an isomorphism of weighted sets.

We break the proof into several lemmas.
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Lemma 3.4.7. The map invcode is a well-defined morphism from IDµ,A → Cµ,A for all µ
and A.

Proof. Let w : A→ Z+ be a diagram in IDµ,A, and let c = invcode(w).
We first show that c is µ-sub-Yamanouchi. Let i > 0 and consider the subset of dots

labeled i in the inversion labeling of w, say w(r1), . . . , w(rt) from left to right. We claim
that w(rt−j) is the left element of at most j inversions for each j = 0, . . . , t − 1. Indeed,
w(rt−j) is to the left of exactly j dots labeled i; those dots in a lower row form the Type I
inversions with w(rt−j). For Type II, the dots labeled i + 1 in a higher row must have an i
to the right of them, so correspond to one of the dots labeled i in a higher row and to the
right of w(rt−j). Thus w(rt−j) is the left element of at most j inversions, and so crt−j ≤ j.

It follows that cr1 , . . . , crt is an ordinary Carlitz code. Therefore, c can be decomposed
into several Carlitz codes, one for each label, of lengths µ∗1, µ

∗
2, . . .. Let di be the resulting

upper bound on ci for each i. Then d is a union of the sequences

µ∗i , µ
∗
i − 1, . . . , 2, 1, 0

for each i, arranged so that each of these sequences retains its order. Thus d is a Yamanouchi
code, since every entry di can be matched with a unique entry having value di−1 to its right,
namely the next entry in the corresponding subsequence. Note also that d is Yamanouchi of
shape µ, since there are µ1 zeroes, µ2 ones, etc in d. Since c is bounded above component-wise
by d, we have that c is µ-sub-Yamanouchi.

We now show that c is A-weakly increasing. It suffices to show that for any two con-
secutive dots w(t), w(t + 1) of w that are in inversion-friendly order, we have ct ≤ ct+1.
Suppose the dot w(t) is labeled i in the inversion labeling, and w(t + 1) is labled j. Then
by assumption, since they are in inversion-friendly order, we have either i = j with the j in
a higher row than i, or j < i. The i is the left element of ct inversions and the j is the left
element of ct+1 inversions.

First suppose i = j and the j is in a higher row than the i, that is, w(t + 1) > w(t). If
b is an index to the right of the i such that (w(t), w(b)) is an inversion, then there are three
possibilities: First, w(b) could be labeled i and be below w(t), in which case (w(t+ 1), w(b))
is also an inversion. Second, w(b) could be labeled i+1 and be above w(t) but below w(t+1),
in which case there is a dot labeled i in row w(b) to the right of b, forming an inversion with
w(t + 1). And third, w(b) could be labeled i + 1 and be above row w(t + 1), in which case
(w(t+ 1), w(b)) is also an inversion. Thus there is at least one inversion with w(t) as its left
element for every inversion with w(t+ 1) as the left element, and so ct ≤ ct+1 in this case.

Similarly, if j < i, then any dot labeled i or i + 1 has a dot labeled j and a dot labeled
j + 1 to its right, and so ct ≤ ct+1 in this case as well.

It follows that invcode is a well-defined map.

Lemma 3.4.8. The map invcode is injective.
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Proof of Theorem 3.4.3. We will show that given a code c, we can form an inversion-friendly
diagram by placing dots above c1, c2, . . . , cn from left to right. We claim that there is a
unique height that is compatible with c at each step.

With the empty word as a trivial base case, we proceed inductively. Suppose we have
already placed the first t − 1 dots from the left. There may be several possible dot heights
available for the t-th dot, depending on the shape µ and which dot heights have already
been chosen. We claim that each possible height would result in a different value of the code
number ct. To show this, let h1 < h2 be two possible heights of the t-th dot. Since the first
t− 1 dots have been chosen and we know the shape of the diagram, the labels i and j of a
dot at height h1 or h2 respectively are uniquely determined. We also note that the inversion
code number ct is uniquely determined by the choice of the t-th dot (given the first t − 1
dots), since any row of length µr ≥ i that did not have a dot labeled i among the first t
values must necessarily have one afterwards, and so the set of label values in each row to the
right of the t-th entry is determined.

So, let r be the inversion code number ct that would result from the dot at height h1
labeled i, and s the code number for h2 labeled j. We wish to show that s 6= r, and we
consider the cases j ≤ i and j > i separately.

If j ≤ i, let k be the number of dots labeled i that would be below and to the right of
the w(t) if w(t) = h1 (labeled i). Then r − k would be the number of i + 1’s above and to
the right of it. Each of the k rows having the i’s also have j’s weakly to the right of them
because j ≤ i, and each of the r − k rows with the i + 1’s have both a j + 1 and a j to the
right. Thus if w(t) = h2 (labeled j) instead, the j would have at least r inversions, and so
s ≥ r. But if w(t) = h2, then this j also forms an inversion with the j in row h1, giving an
extra inversion. Thus s > r, and so s 6= r in this case.

If j > i, consider the s dots labeled j or j + 1 that would form an inversion with w(t)
if w(t) = h2. Then each of these rows would also contain an i or i + 1 that would form an
inversion with the i at height h1, in addition to the row h2 itself, showing that r > s. Thus
s 6= r, as desired.

We have that |Cµ,A| = |CA(µ)| by our definition of C. Furthermore, whenA = {1, 2, . . . , n}
we have | IDµ,A | =

(
n
µ

)
because we are simply counting the number of unrestricted diagrams

having µ1 dots in the first row, µ2 in the second row, and so on. We can now conclude
bijectivity in this case.

Corollary 3.3.11. The map invcode is bijective in the case A = {1, 2, . . . , n}.

We are now ready to prove Theorem 3.4.3.

Proof. We already have shown (Corollary 3.3.11) that invcode is a bijective map IDµ,[n] →
Cµ,[n]. Notice that for any other alphabet A = {a1, . . . , an}, we have IDµ,A ⊂ IDµ,[n] and
Cµ,A ⊂ Cµ,[n]. We also know that the map

invcode : IDµ,[n] → Cµ,[n]
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restricts to an injective map invcode : IDµ,A → Cµ,A by Lemmas 3.4.7 and 3.4.8. It remains
to show that it is surjective onto Cµ,A.

Let c ∈ Cµ,A ⊂ Cµ,[n]. Then c is A-weakly increasing on constant letters of A. Let
d = invcode−1(c) ∈ IDµ,[n]. We wish to show that d is of inversion word type with respect to
A, so that d ∈ IDµ,A, that is, if r < s and ar = as in A then (d(ar), d(as)) is not an inversion.
Suppose (d(ar), d(as)) is an inversion. Then either d(ar) and d(as) are both dots labeled i
with d(as) < d(ar), or d(ar) is labeled i and d(as) labeled i+ 1 with d(as) > d(ar).

In the first case, if (d(as), d(at)) is another inversion involving as, then either d(at) is
lower than d(as) (and hence lower than d(ar)) and labeled i, or it is above it and labeled
i + 1. If the former then (d(ar), d(at)) is an inversion, and if the latter, either there is an
i in the same row forming an inversion with d(ar), or the i + 1 is above d(ar), forming an
inversion with it. Thus d(ar) is the left element of at least as many inversions as d(as), plus
one for the inversion (d(ar), d(as)). Thus cr > cs.

In the second case, if (d(as), d(at)) is another inversion, then d(at) is either lower (but
possibly above d(ar)) and labeled i+ 1, or higher and labeled i+ 2. In the former case either
d(at) itself forms an inversion with d(ar) or the i in its row does. In the latter case the i+ 1
in its row forms an inversion with d(ar). Since (d(ar), d(as)) is an inversion as well, we again
have cr > cs. But this contradicts the fact that c is A-weakly increasing.

Hence invcode is surjective, and thus bijective, from IDµ,A to Cµ,A. Clearly the map
preserves the statistics: the sum of all the entries of the inversion code of a diagram is the
total number of inversions of the diagram, so invcode sends inv to Σ. Therefore,

invcode : IDµ,A → Cµ,A

is an isomorphism of weighted sets.
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Chapter 4

Major Index Codes in the
Hall-Littlewood Case

In Section 3.4, we found an isomorphism of weighted sets, the map invcode, from Fαµ∗|maj=0; inv)
to (Cµ,A; Σ). To complete the proof of q, t-symmetry in the Hall-Littlewood case, it now suf-
fices to find a weighted set isomorphism

majcode : (Fαµ |inv=0; maj)→ Cµ,A

where α is the content of the alphabet A.
Recall the recursion for the µ-sub-Yamanouchi codes of content A from Proposition 3.3.9:

CA(µ) =

µ∗1⊔
i=1

xi−1n · C(i−1)A (µ(i)).

Using this recursion, one possible strategy for constructing majcode is by showing combina-
torially that Fαµ |inv=0 satisfies a similar recursion.

In this section, we present some partial progress towards finding the map majcode. All
of our work is based on the following four-step approach to the problem.

Step 1. Consider the content (1n) corresponding to fillings with distinct entries, and find an
explicit weighted set isomorphism

ψ : (F (1n)
µ |inv=0; maj)→

⊔
d

(F (1n−1)

µ(d+1) |inv=0; maj +d).

That is, ψ should send an inversion-free filling T of µ to an inversion-free filling ψ(T )
of µ(d+1) for some d, such that

maj(ψ(T )) = maj(T )− d.
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Step 2. Define the majcode of a filling T having content (1n) to be d1d2 . . . dn where

dk = maj(ψk(T ))−maj(ψk−1(T )).

Step 3. Check the base case of a single square, and conclude that because the recursion is
satisfied, majcode is an isomorphism of weighted sets

(F (1n)
µ |inv=0,maj)→ (Cµ,[n],Σ),

where Cµ,[n] are the generalized Carlitz codes of shape µ and content [n].

Step 4. Show that there is a standardization map

Standardize : Fαµ |inv=0 → F1n

µ |inv=0

that respects maj, such that the composition majcode ◦ Standardize is a bijection to
Cµ,A where A is the alphabet with content α. That is, show that after standardizing,
we get a major index code which is A-weakly increasing, and none of these codes are
mapped to twice.

4.1 Killpatrick’s Method for Standard Fillings

For Step 1 in our strategy, in which A = {1, 2, . . . , n} is an alphabet with no repeated
letters, such a map can easily be extracted from the work of Killpatrick [26]. In this paper,
the author gives a combinatorial proof of a recursion for a generating function involving the
charge statistic ch (recall that ch(µ) = n(µ)− cc(µ) where n(µ) =

∑
i(i−1) ·µi.) Killpatrick

defines Wµ to be the set of words of content µ, and lets ri,µ = |{j > i : µj = µi}|. The
recursion is stated as: ∑

w∈Wµ

qch(w) =
∑
i

qri,µ
∑

w∈W
µ(i)

qch(w).

If we substitute q → 1/q and multiply both sides by qn(µ), this becomes∑
w∈Wµ

qcc(w) =
∑
i

qi−1
∑

w∈W
µ(i)

qcc(w),

which is equivalent to the recursion we stated in step 1 above. Killpatrick’s work, when
translated into the language of fillings via the cocharge word construction, gives a map ψ
for step 1. We now give a translated description of the map ψ.

Definition 4.1.1. The crank of a filling σ having inv(σ) = 0 and alphabet {1, . . . , n} is
the filling formed by (a) decreasing each entry i ≥ 2 by 1 and replacing the entry 1 with n,
and (b) rearranging the entries within each row in the unique way such that inv = 0, as in
Proposition 2.5.17.
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Definition 4.1.2. A crank orbit is the set of all fillings obtained by repeatedly applying
the crank to a filling.

Note that the crank orbits have sizes |µ|/d where d is some common divisor of the parts
of µ. Furthermore, the crank orbits partition the fillings of µ into disjoint subsets. (See
Figure 4.1.)

Let T be a filling with inv(T ) = 0. We now give a five-step algorithm (A-E below) for
computing ψ(T ), and throughout we use the example

T = 3 4
1 2

.

A. List the crank orbits and mark the “special” fillings. List the entries of each
crank orbit for µ in order by starting with a filling and repeatedly applying the crank. We
define a special filling of such an orbit to be a filling for which the largest entry n = |µ|
occurs in the bottom row of the tableau.

B. Assign difference values plus one to the special fillings. For each special filling
σ?, define

diff(σ?) = maj(crank−1(σ?)))−maj(σ?)

Assign to each special filling the number

`(σ?) = diff(σ?) + 1.

The work in [26] shows that the values `(σ?), ranging over all special fillings in a given orbit
of size |µ|/d, will be the sizes of the column lengths of the partition µ/d formed by dividing
each of the rows of µ by d.

C. Assign labelings. Starting with any special filling σ? in a given orbit, label it z1
and proceed to label each entry in the orbit according to the following algorithm. Continue
labeling entries by z1 in order until we have either labeled `(σ?1) of them, or until we encounter
another special filling σ?2. In either case, change our label to z2 and start labeling entries
with z2 starting from σ?2 in the same manner. If we finish labeling `(σ?2) fillings with a2 and
have not finished labeling with z1’s, return to z1 until it is finished or we reach the next star,
which we label z3, and so on. (See Figure 4.1.) It turns out that we will end up with the
same partition of the orbit given by the labels zi no matter which special filling that we start
at. [26]

D. Sort the labeled entries into columns. For the crank orbit of T , sort all of the
entries labeled z1, all those labeled z2, and so on each into their own column with the special
entry at the bottom and the rest above it in the order they appear in the orbit. This forms
a set of columns which, if arranged in decreasing order of height, forms the partition shape
µ/d.
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1 2
3 4

4 1
2 3

3 4
1 2

2 3
1 4

3 1
2 4

2 4
1 3

special? ? ? ?
maj 0 1 2 1 1 2
`(σ?) 2 2 2
label z1 z1 z2 z2 z1 z1

Figure 4.1: The crank orbits for µ = (2, 2), along with their special entries, maj and `
values, and labels.

For example, for the first orbit in Figure 4.1, we have two columns:

4 1
2 3

3 4
1 2

1 2
3 4

2 3
1 4

E. Bumping from the bottom. Find the location of T in one of the columns produced
in Step 4. Let i be the number of fillings below T in its column. Let T ? be the special filling
in the bottom row of the column of T . Let cell c = (row, col) be the corner of T ? that is
removed to form shape µ(i), and let T ?→ be the filling formed by deleting columns 1, . . . , col−1
of T ?. So, in the running example, T is in the upper right corner of the diagram from Step

4, and so c = 2, i = 1, T ? = 2 3
1 4

and T ?→ = 3
4

.

Define the bumping sequence to be the sequence of entries brow, brow−1, . . . , b1 where
brow is the entry in square c, and for all j, bj is the entry in row j of T ?→ which is the largest
entry less than bj+1 (or the very largest entry, if bj+1 is less than all entries in row j). It
turns out that we always have b1 = n.

Finally, remove b1 = n and bump down b1, . . . , brow one row each. Re-order the rows so
that there are no inversions, and the resulting tableau is ψ(T ). In the running example we

have ψ(T ) = 2
1 3

. Killpatrick’s proof shows that maj(ψ(T )) = maj(T )− i. It follows that

ψ gives rise to a map majcode that completes the proof of symmetry in this case.

Theorem 4.1.3. In the case α = (1n) of fillings with distinct entries, we have that ϕ =
majcode−1 ◦ invcode is an isomorphism of weighted sets

ϕ : F (1n)
µ |maj=0 → F (1n)

µ∗ |inv=0.

However, Killpatrick’s map majcode′ does not satisfy the requirements of Step 4. To
illustrate this, we consider the case in which µ = (1n) is a straight column shape. In this
case, Killpatrick’s bijection majcode′ can be rephrased as follows. Given a filling w of a



CHAPTER 4. MAJOR INDEX CODES IN THE HALL-LITTLEWOOD CASE 49

straight column shape such as the one with reading word 1432 in the diagram below, check
to see if the bottommost entry is n. If not, cyclically increase each entry by 1 modulo n.
(Here we’re using the inverse of the crank for convenience.) Continue applying the inverse
crank until the bottommost entry is n, and let c1 be the number of times we applied the
inverse crank. (In the figure, c1 = 2.)

2
3
4
1

3
4
1
2

4
1
2
3

1
2
3

2
3
1

3
1
2

1
2

2
1 1

Once the bottommost entry is n, we remove the bottom box, and repeat step 1 on the
new tableau. The resulting number of inverse cranks used is recorded as c2. (In the figure,
c2 = 2.) We continue until there are no boxes left, and set majcode′(w) = c1c2 · · · cn. (In the
figure, majcode′(w) = 2210.)

Now, suppose we had a standardization map Standardize as in Step 4. Consider the
one-column tableaux having entries from the alphabet {2, 2, 1, 1, 1, 1} and major index 4.
There are three such tableaux:

2

1

2

1

1

1

1

1

2

2

1

1

1

1

1

2

1

2

There are also three (16)-sub-Yamanouchi codes that are {2, 2, 1, 1, 1, 1}-weakly increasing
and sum to 4, namely:

040000

130000

220000

It follows that Standardize maps these three tableaux to the three standardized fillings
whose codes majcode′ are 040000, 130000, and 220000, respectively. But these three tableaux
are:
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6

1

5

4

3

2

5

1

6

4

3

2

4

1

6

5

3

2

Therefore, the map Standardize cannot preserve the relative ordering of the entries, or
even the positions of the descents. This makes it unlikely that a simple rule for such a
standardization map exists. However, it is possible that there exists a more complicated
combinatorial rule for such a map, and we leave this as an open question for future investi-
gation.

Problem 4.1.4. Construct a natural map Standardize that satisfies the conditions of Step
4 for Killpatrick’s map majcode′.

Since standardization is not immediate, we now return to Carlitz’s bijection and gener-
alize majcode to arbitrary inversion-free fillings of certain infinite families of shapes.

4.2 Cocharge Contribution and Structural Results

We now introduce some new definitions and technical lemmata which will be used throughout
the proofs in this chapter.

Definition 4.2.1. The cocharge contribution cc(i,j)(σ) of an entry σ(i, j) of a filling σ is
the number of descents that occur weakly below the entry (i, j) in its column, j.

It is easy to see that the cocharge contributions add up to the major index.

Proposition 4.2.2. Let σ : µ→ Z+ be any filling. Then maj(σ) is equal to the sum of the
cocharge contributions of the entries of σ, i.e.

maj(σ) =
∑

(i,j)∈µ

cc(i,j)(σ).

We omit the proof, and refer the reader to the example in Figure 4.2.

Definition 4.2.3. Let w be any sequence consisting of k 0’s and k 1’s, and let a1, a2, . . . , ak
be any ordering of the 0’s. We define the crossing number of w with respect to this
ordering as follows. Starting with a1, let b1 be the first 1 to the right of a1 in the sequence,
possibly wrapping around cyclically if there are no 1’s to the right of a1. Then let b2 be the
first 1 cyclically to the right of a2 other than b1, and so on. Then the crossing number is the
number of indices i for which bi is to the left of ai.
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40 80 120

91 10 20

102 51 111

32 62 71

40 80

91 10 20

102 51 111

32 62 71

40 80 20

91 10 111

102 51 71

32 62

20 40 80

91 111 10

102 51 71

32 62

Figure 4.2: The cocharge contribution of the entries in each tableau is shown as a super-
script. Notice that the sum of the cocharge contributions of a tableau is equal to its major
index. In addition, the three-step process of Proposition 4.3.1 does not change the major
index.

Example 4.2.4. If we order the 0’s from left to right, the word 10110010 has crossing
number 2.

Lemma 4.2.5. Let w be any sequence consisting of k 0’s and k 1’s. Then its crossing
number is independent of the choice of ordering of the 0’s.

Proof. Say that a word is 0-dominated if every prefix has at least as many 0’s as 1’s.
First, we note that there exists a cyclic shift of w which is 0-dominated. Indeed, consider
the partial sums of the (−1)wi ’s in the sequence, so that any 0 contributes +1 and any 1
contributes −1. The total sum is 0, and we can shift to start at the index of the minimal
partial sum; the partial sums will now all be positive.

Now, we show by induction that any 0-dominated sequence has crossing number m = 0.
It is clearly true for k = 1, since the only 0-dominated sequence is 01 in this case.

Suppose the claim holds for any 0-dominated sequence of k − 1 0’s and k − 1 1’s and
let s be an 0-dominated sequence with k 0’s. Choose an arbitrary 0 to be a1, and denote it
0̂. Then since s is 0-dominated, the last term in s is a 1 and so 0̂ will be paired with a 1,
denoted 1̂, to the right of it. Remove both 0̂ and 1̂ from s to form a sequence s′ having k− 1
0’s and k − 1 1’s.

We claim that s′ is 0-dominated. Note that all prefixes of s′ that end to the left of 0̂
are unchanged, and hence still have at least as many 0’s as 1’s. Any prefix P ′ that ends
between 0̂ and 1̂ is the result of removing 0̂ from a corresponding prefix P of s, which had
at least as many 0’s as 1’s. If there were an equal number of 0’s as 1’s in P , then its last
term is a 1. This means that 1̂ was not the first 1 to the right of the 0, a contradiction. So
P has strictly more 0’s than 1’s, and so P ′ = P \{0̂} has at least as many 0’s as 1’s. Finally,
any prefix which ends to the right of 1̂ has one less 0 and one less 1 than the corresponding
initial subsequence of s, and so it also has at least as many 0’s as 1’s. It follows that s′ is
0-dominated.

By the inductive hypothesis, no matter how we order the remaining 0’s, there are no
crossing pairs. Since the choice of a1 was arbitrary, the crossing number is 0 for any ordering
of the 0’s.
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Returning to the main proof, let w = w1w2 · · ·w2k and let i be such that the cyclic shift
w′ = wiwi+1 · · ·w2kw1w2 · · ·wi−1 is 0-dominated. Then every pairing in w′ has the 0 to the
left of the 1, and so the crossing number of w is the number of pairings in which the 0 is
among wi · · ·w2k and the 1 is among w1 · · ·wi−1. Hence, the crossing number is equal to the
difference between the number of 1’s and 0’s among w1w2 · · ·wi−1. This is independent of
the choice of order of the 0’s, and the proof is complete.

In the rest of the paper, if a row r is above a row s in a filling, we say that we rearrange
r with respect to s if we place the entries of r in the unique ordering for which there are
no inversions in row r, given that s is below it.

Lemma 4.2.6. Let σ be a filling of the two-row shape (k, k) with inv(σ) = 0. Let σ′π be
formed by rearranging the bottom row via the permutation π, and rearranging the top row
with respect to the new bottom row. Then maj(σ) = maj(σ′π).

Proof. Let w be cocharge word of the diagram. No matter what the permutation of rows, the
cocharge word will remain unchanged, a sequence of k 1’s and k 2’s. But the permutation
of the bottom row determines a permutation of the 1’s, and the subsequent ordering of the
top row is determined by the process of selecting the first remaining 2 cyclically to the right
of the 1 at each step. It forms a descent if and only if that 2 is to the left of the 1, i.e. if
it contributes to the crossing number. So the number of descents is equal to the crossing
number of the cocharge word (thinking of the 1’s as 0’s and the 2’s as 1’s), and by Lemma
4.2.5 the proof is complete.

We now have the tools to prove the next technical lemma.

Lemma 4.2.7. Let a1, . . . , aw−1 be any positive integers, and suppose b1, . . . , bw are positive
integers such that the partial tableau

b1 b2 · · · bw−1 bw
a1 a2 · · · aw−1

has no inversions among the bi’s. Then if we rearrange a1, . . . , aw−1 in any way and then re-
arrange the b’s in the unique way that guarantees no inversions among the b’s, then the entry
bw is still in the last position. Furthermore, the total number of descents among b1, . . . , bw is
unchanged after this operation.

Proof. Consider the cyclic ordering of a1, . . . , aw−1, b1, . . . , bw. Since there are no inversions
among the b’s, we have that ai, bi, bw are in cyclic order for each i, possibly with bi = bw or
ai = bw.

Let bw, t1, . . . , t2w−2 be the ordering of these letters that is in cyclic order, with ties broken
in such a way that bw, ai, bi occur in that order in the sequence for each i. Then if we replace
the ai’s with 0’s and the bi’s with 1’s, the suffix t1, . . . , t2w−2 has crossing number 0 since
each ai is paired with bi to its right.
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It follows from Lemma 4.2.5 that, if we rearrange the ai’s, the crossing number is still 0
and so bw still corresponds to the 1 at the beginning of the sequence. It follows that bw is still
in the last position in the new filling. Finally, by considering only the first w−1 columns, we
can apply Lemma 4.2.6 to see that the total number of descents among b1, . . . , bw−1 remains
unchanged.

The following lemma is a sort of inverse to Lemma 4.2.7.

Lemma 4.2.8. Given two collections of letters b1, . . . , bw−1 and a1, . . . , aw, there is a unique
element ai among a1, . . . , aw such that, in any two-row tableau with a1, . . . , âi, . . . , aw as the
entries in the bottom row and b1, . . . , bw−1, ai as the entries in the top, with no inversions in
the top row, the entry ai occurs in the rightmost position in the top row.

Proof. As usual, let us think of the ai’s as 0’s and the bi’s as 1’s in a cocharge word, arranged
according to the magnitudes of the ai’s and bi’s. Then we have a sequence of w 0’s and w−1
1’s, and we wish to show that there is a unique 0 that, when we change it to a 1, is not
paired with any 0 when computing the crossing number. By Lemma 4.2.7, there is a unique
such 1 in any word of w − 1 0’s and w 1’s.

So, by Lemma 4.2.7, it suffices to find a 0 in the original tableau such that upon removal,
the remaining sequence starting with the entry to its right is 0-dominated. For instance, in
the sequence 001110100, which has 5 zeros and 4 ones, if we remove the second-to-last zero
and cyclically shift the letters so that the new sequence starts with the 0 to its right, we get
the sequence 00011101, which is 0-dominated.

To show that there is a unique such 0, consider the up-down walk starting at 0 in which
we move up one step for each 0 in the sequence and down one step for each 1. Then we end
at height 1, since there is one more 0 than 1 in the sequence. For instance, the sequence
001110100 corresponds to the up-down walk:

Consider the last visit to the minimum height of this walk. If the minimum height is 0
then we simply remove the last 0 in the sequence and we are done. If the minimum height is
less than 0, then there are at least two up-steps (0’s) following it since it is the last visit to
the min. The first of these up-steps corresponds to a 0 which we claim is our desired entry.
Indeed, if we remove this 0, the walk starting at the next step and cycling around the end
of the word is a positive walk, corresponding to a 0-dominated sequence.

It is easy to see that if we do the same with any of the other 0-steps, the resulting
walk will not be positive and so the corresponding sequence will not be 0-dominated. This
completes the proof.

Notice that in a two-row shape with the bottom row ordered least to greatest and no
inversions in the second row, the descents must be “left-justified”: they must occur in
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columns 1, . . . , k for some k. For, if br > ar is a descent and br−1 ≤ ar−1 is not, then
br > ar−1 by transitivity and we have br−1 ≤ ar−1 < br, forming an inversion. Moreover,
after the descents the bi’s are weakly increasing: bi ≤ bj for k < i < j - this follows directly
from the fact that none of these bi’s are descents. The descents b1, . . . , bk are also weakly
increasing; otherwise we would have an inversion. We will use this fact throughout.

Lemma 4.2.9. Let a1 ≤ · · · ≤ aw−1 and let b1, b2, . . . , bw be numbers such that the partial
tableau

b1 b2 · · · bw−1 bw
a1 a2 · · · aw−1

has no inversions in the second row. Then if we bump bw down one row so that

a1 ≤ a2 ≤ · · · ≤ at ≤ bw < at+1 ≤ · · · ≤ aw−1

is the bottom row, and leave b1, . . . , bw−1 unchanged, then the new tableau still has no inver-
sions, and the descents in the second row remain the same (and left-justified).

Proof. Let k be the number of descents among the b’s. If k = 0, there are no descents,
and we must have bw ≤ a1 so as not to have inversions. In this case, bw drops down into
the first position in the bottom row, and there are still no descents and no inversions since
b1 ≤ b2 ≤ . . . ≤ bw−1 in this case.

If k ≥ 1, then bk > ak is the last descent. Since bk and bw do not form an inversion in
the original tableau, we must either have ak < bk ≤ bw or bw ≤ ak < bk. We consider these
cases separately.

Case 1: Suppose ak < bk ≤ bw. Then t > k, i.e. bw drops to a position to the right of the
last descent, after which point we have bi ≤ ai for all such i. Thus, for instance, bt+1 < at+1,
and since bw and bt+1 did not originally form a descent, we must have bt+1 ≤ bw ≤ at+1.
This means that bt+1 ≤ bw, so bt+1 still does not form a descent in the new tableau. Then,
similarly we have bt+2 ≤ bw, and so bt+2 ≤ at+1, and so on. Thus the descents have stayed
the same in the new tableau.

Furthermore, since bi < bw for all i ≥ t + 1 in this case, we have bi < bw < ai for
all i ≥ t + 1, and since the bi’s after position k are weakly increasing, none of these form
inversions. Since b1, . . . , bt are above the same letters a1, . . . , at as before and are in the same
positions relative to the other bi’s, they cannot be the left elements of inversions either.

Case 2: Suppose now that bw ≤ ak < bk. If bw = ak then in fact it drops to the right of
ak and it is the same as the previous case. So we can assume that bw < ak < bk.

Then t ≤ k, i.e. bw drops to a position underneath a descent of the original tableau shape.
Since bw ≤ at+1 and at+1 < bt+1 is a descent, we have bw < bt+1 and so bt+1 is still a descent
in the new tableau. Similarly bi is still a descent for all i ≤ k. To check that bk+1 is still not
a descent, assume it is: that ak < bk+1. Then bw ≤ ak < bk+1, and so bw ≤ ak+1 ≤ bk+1 since
the original filling had no inversions. If ak+1 < bk+1, we get a contradiction, so ak+1 = bk+1.
But then bw = ak+1, contradicting the fact that bw < ak+1. Thus there is not an inversion in
the (k + 1)st position. Hence the descents stay the same in this case as well.
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Furthermore, consider bi and bj with i < j < w: if i is among 1, . . . , t then bi and bj do
not form an inversion since bi is still above ai. If i and j are both among t + 1, . . . , k, then
they do not form an inversion, since bi and bj are both descents and bi < bj. If i is among
t + 1, . . . , k and j > k, note that bj < bw since it is in the run of non-descents of the b’s.
Hence bj < ai by transitivity, and so bj < ai < bi since bi is a descent. This implies that bi
and bj do not form an inversion. Finally, if i > k and j > i, we are once again in the run of
non-descents at the end, which is weakly increasing, and hence there are no inversions since
none are descents. We conclude that the bi’s have no inversions among them in this case
either.

Lemma 4.2.10. Let a1, . . . , aw−1, b1, . . . , bw, and cw be numbers such that the partial filling

cw
b1 b2 · · · bw−1 bw
a1 a2 · · · aw−1

has no inversions in the second row. Then there exists an ordering t1, . . . , tw of a1, . . . , aw−1, bw
such that if s1, . . . , sw is the unique ordering of b1, . . . , bw−1, cw for which the partial filling

s1 s2 · · · sw
t1 t2 · · · tw

has no inversions in the second row, then the entry cw is directly above bw in the new filling.

Proof. Let T ′ be the two-row filling consisting of the s’s and t’s as in the statement of the
lemma. Let x be the cocharge word of T ′, with the bottom row indexed by 0 and the top by
1. Then x consists of 0’s and 1’s, and as in Lemma 4.2.5, the number of descents in T ′ is the
crossing number of this word. So bw is one of the 0’s in this word, and cw is one of the 1’s,
and we wish to show that there is some ordering of the 0’s in which bw is paired with cw.

Assume to the contrary that bw cannot be paired with cw no matter how we order the
0’s. Choose a cyclic shift x̃ of x whose crossing number is 0, as we did in Lemma 4.2.5. If
bw is to the left of cw in x̃, then since it can’t be paired with cw there must be an index k
between that of bw and cw at which the prefix of the first k letters is 0-dominated. For, if
there were more 0’s than 1’s at every step up to cw then we can pair off the other 0’s starting
from the left until cw is the first 1 to the right of bw. This means we can choose a different
cyclic ordering, starting at the k+ 1st letter, for which the crossing number is also 0. In this
cyclic shift, cw is to the left of bw. So we have reduced to the case that cw is to the left of bw.

In this case, cw is one of the 1’s, and bw is one of the 0’s, e.g. in the 0-dominated sequence
001011, we might have cw be the third entry and bw the fourth. Before we dropped down the
bw and cw, we had a tableau whose cocharge word looked like this word except with the 0 of
bw replaced by a 1, and the 1 of cw replaced by a 2 (in the example, this would give us the
word 002111.) Remove the 2 from this word. In the resulting word of 0’s and 1’s, since we
have bumped up a 0 to a 1 but removed one of the 1’s before it, every prefix is 0-dominated
except the entire word, which has one more 1 than it has 0’s. Thus the very last 1 is the
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only entry which is not paired. But bw is, by assumption, the entry which is unpaired in the
original ordering. This is a contradiction, since bw was a 0 in the bumped-down word and
hence could not have been in the last position.

It follows that there must exist an ordering of the 0’s in which bw is paired with cw. This
completes the proof.

4.3 Bumping from the Bottom

The Carlitz bijection on words, defined in Section 3.2, gives a map majcode for arbitrary
fillings of one-column shapes µ. We now present a strategy towards generalizing to all shapes
µ, and show that rectangles behave similarly to one-column shapes.

Our primary tool is the following technical result. This proposition generalizes the fact
that if we remove the largest entry n from the bottom of a one-column shape, we get a major
index code entry d = 0.

Proposition 4.3.1. Suppose σ : µ → Z+ is a filling for which inv(σ) = 0 and the largest
entry n appears in the bottom row. Let σ↓ : µ(1) → Z+ be the filling obtained by:

1. Removing the rightmost n from the bottom row of σ, which must be in the rightmost
column since inv(σ) = 0,

2. Shifting each of the remaining entries in the rightmost column down one row,

3. Rearranging the entries in each row in the unique way so that inv(σ↓) = 0.

Then the major index does not change:

maj(σ) = maj(σ↓).

To prove this, we require two further lemmas. In all of what follows, we let σ : µ→ Z+

be a filling with inv(σ) = 0 whose largest entry appears in the bottom row, and let σ↓ :
µ(1) → Z+ be constructed from σ as above.

Lemma 4.3.2. Suppose inv(σ) = 0. Let i ≥ 1 be an index such that µi+1 = µ1, i.e. the
(i+ 1)st row of µ is as long as the bottom row. Then we have

cc(i+1,µ1)(σ) +
∑

1≤j≤µ1−1

cc(i,j)(σ) =
∑

1≤j≤µ1

cc(i,j)(σ↓).

Proof. We induct on i. For the base case, i = 1, the left hand side is the total cocharge
contribution of the entries (1, 1), (1, 2), . . . , (1, µ1 − 1) and the entry (2, µ1). The square
(1, µ1) is filled with the largest number n, by our assumption that n appears in the bottom
row and the fact that inv(σ) = 0. Thus the entry in (2, µ1) cannot be a descent, and so the
cocharge contribution of all of these entries are 0. Thus the left hand side is 0. The right
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hand side is also 0, since it is the sum of the cocharge contributions from the bottom row of
σ↓.

For the induction, let i > 1 and suppose the claim is true for i− 1. Then the induction
hypothesis states that

s := cc(i,µ1)(σ) +
∑

1≤j≤µ1−1

cc(i−1,j)(σ) =
∑

1≤j≤µ1

cc(i−1,j)(σ↓).

Then if there are k descents among the entries (i+ 1, µ1) and (i, 1), . . . , (i, µ1− 1) of σ, then
their total cocharge contribution is equal to s + k, since they are the entries strictly above
those that contribute to the left hand side of the equation above.

So, to show that

cc(i+1,µ1)(σ) +
∑

1≤j≤µ1−1

cc(i,j)(σ) =
∑

1≤j≤µ1

cc(i,j)(σ↓),

it suffices to show that the total cocharge contribution of the i-th row of σ↓ is also s+ k. By
the induction hypothesis it is equivalent to show that there are k descents among the entries
in the i-th row of σ↓.

Now, let w = µ1 be the width of the tableau, and let a1, . . . , aw−1 be the first w − 1
entries in row i− 1 of σ. Let b1, . . . , bw be the elements of row i, and let cw be the entry in
square (i+ 1, w), above bw.

cw
b1 b2 · · · bw−1 bw
a1 a2 · · · aw−1

Consider the 2 × w tableau T ′ with bottom row elements a1, . . . , aw−1, bw and top row
elements b1, . . . , bw−1, cw. By Lemma 4.2.10, there is a way of rearranging the bottom row of
T ′ such that if we rearrange the top row respectively, then cw lies above bw. This suffices, for
now the remaining columns will form a tableau with no inversions in the second row, with
a1, . . . , aw−1 and b1, . . . , bw−1 as the entries of the rows. By Lemma 4.2.6 this has the same
number of descents independent of the ordering of the ai’s, and cw will be a descent or not
depending on whether it was a descent before. Thus there are still k descents in the i-th
row.

Lemma 4.3.2 shows that the cocharge contribution is conserved for rows i for which
µi+1 = µ1. The next lemma will show that the cocharge contribution is unchanged for
higher rows as well. Again, here σ is a filling having its largest entry n occurring in the
bottom row.

Lemma 4.3.3. Suppose inv(σ) = 0, and the rightmost (wth) column of µ has height µ∗w = h.
Then in σ↓, row h consists of the first w − 1 letters of row h of σ in the same order, and
their cocharge contributions are the same as they were in σ.
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It follows from this lemma that all higher rows are unchanged as well, and combining
this with Lemma 4.3.2, it will follow that maj(σ) = maj(σ↓).

Proof. We induct on h, the height of the rightmost column. For h = 1 and h = 2, we are
done by previous lemmata (see Lemma 4.2.9). So, suppose h ≥ 3 and the claim holds for all
smaller h.

Performing the operation of Proposition 4.3.1, suppose we have bumped down all but
the topmost entry (in row h) of the rightmost column and rearranged each row with respect
to the previous. Let rows h− 2, h− 1, and h have contents:

d1 d2 · · · dw−1 dw
c1 c2 · · · cw−1
x1 x2 · · · xw−1 xw

Notice that, by the induction hypothesis, the entries c1, . . . , cw−1 are the same as they were
in σ before bumping down cw and have the same cocharge contributions as they did before.
Thus the row of d’s as shown is currently the same as row h of σ. So, we wish to show that
upon bumping dw down and rearranging all rows so that the filling has no inversions, the
entries in row h are still d1, d2, . . . , dw−1 in that order, and that these entries have the same
cocharge contributions as they did before.

We first show that the entries d1, . . . , dw−1 do not change their positions upon bumping
dw down to row h− 1 (and rearranging so that there are still no inversions.) We proceed by
strong induction on the width w. For the base case, w = 2, we have that d1 is the only entry
left in the top row, and therefore cannot change its position.

Now, assume that the claim is true for all widths less than w. If dw bumps down
and inserts in a row t above xt, then the numbers c1, . . . , ct−1 are still above x1, . . . , xt−1
respectively since they are still first in cyclic order after each. Likewise the entries d1, . . . , dt−1
remain the same in this case. Thus we may delete the first t − 1 columns and reduce to a
smaller case, in which the claim holds by the induction hypothesis. This allows us to assume
that when dw bumps down, it is in the first column, above x1, and so the tableau looks like:

d∗ d∗ · · · d∗
dw c∗ · · · c∗ c∗
x1 x2 · · · xw−1 xw

where the ∗’s are an appropriate permutation of the indices for d1, . . . , dw−1 and c1, . . . , cw−1.
We now show that d1, . . . , dr remain in their respective positions for all r ≥ 1, by induction

on r. (So, we are doing a triple induction on the height, the width of the tableau, and the
index of the d’s). For the base case, we wish to show that d1 is the entry above dw in the
new tableau. We have, from the fact that inv(σ) = inv(σ↓) = 0, that the following triples
are in cyclic order for any k such that 2 < k < w:

1. (x1, dw, c1), with possible equalities x1 = c1, dw = c1
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2. (x1, c1, ck), with possible equalities x1 = ck, c1 = ck

3. (ck, dk, dw), with possible equalities ck = dw, dk = dw

4. (c1, d1, dk), with possible equalities c1 = dk, d1 = dk

Combining (1) and (2) above, we have that (x1, dw, c1, ck) are in cyclic order, and so in partic-
ular (dw, c1, ck) is in cyclic order. Combining this with (3) above, we have (dk, dw, c1, ck) are
in cyclic order, and in particular so are (dk, dw, c1). Using this and (4), we have (dk, dw, c1, d1)
are in cyclic order, and in particular either c1 6= d1 or c1 = d1 = dk, and so (dw, d1, dk) are in
cyclic order with either dw 6= d1 or dw = dk = d1; this implies that d1 and dk will not form
an inversion if d1 is placed above the dw. Thus d1 does indeed stay in the leftmost column.

For the induction step, suppose d1, . . . , dr−1 are in columns 1, . . . , r − 1 respectively in
σ↓. We wish to show that dr must be in the rth position. To do so, first notice that since
ci is first in cyclic order after xi among ci, ci+1, . . . , cw−1 for each i, we have that for each i,
the element that appears above xi after bumping dw down is among c1, . . . , ci.

Suppose ck is above xk in the new tableau for some k ≤ r− 1. Then dk is in this column
as well by the induction hypothesis, and so removing this entire column will not affect the
relative ordering of the remaining entries. But now dr is the (r− 1)st of the d’s in question,
and therefore must be in the (r− 1)st position by the induction hypothesis, and so must be
in the rth position in the full tableau (prior to removing the kth column).

Otherwise, if ck is never above xk for any k ≤ r − 1, we have that c1 must appear above
x2, since it can only be c1 or c2 but is not c2 by assumption. Then, c2 must appear above
x3, and so on, up to cr−2 appearing above xr−1. If cr appears above xr, then dr must be
above that since we knew from the previous tableau that it is first in cyclic order after cr
among dr, . . . , dw−1. So the only case that remains is where cr−1 appears in column r, above
xr. The diagram is as follows:

d1 d2 d3 · · · dr−1 d∗ · · ·
dw c1 c2 · · · cr−2 cr−1 · · ·
x1 x2 x3 · · · xr−1 xr · · ·

We wish to show that the entry d∗ above is dr. First, we claim that (dw, c1, c2, . . . , cr) are
in cyclic order. For, we have (x1, c1, c2) and (x1, dw, c1) are in cyclic order, so (x1, dw, c1, c2)
are. Since (x2, c1, c2) and (x2, c2, c3) are in cyclic order, we have that (x2, c1, c2, c3) are in
cyclic order. Since (x1, c1, c3) are in cyclic order as well, we can combine this with the last
two observations to deduce that

(x1, dw, c1, c2, c3)

are in cyclic order. Now, we can use the triples (x3, c3, c4), (x3, c2, c3), and (x2, c2, c4) to
deduce that (x2, c1, c2, c3, c4) are in cyclic order as well. But since (x1, c1, c4) are in cyclic
order, this means that

(x1, dw, c1, c2, c3, c4)
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are in cyclic order as well, and so on. At each step, to add ck to the list we only need consider
rows up to that of xk−1. Hence, the process continues up to k = r.

Finally, notice that since we are only concerned with relative cyclic order of the entries
to determine their positions, we may cyclically increase all the entries modulo the highest
entry in such a way that dw ≤ c1 ≤ c2 ≤ · · · ≤ cr in actual size. Furthermore, since we are
currently only concerned with the position of dr, which is determined by its relative ordering
with di for i > r and with cr−1, we may assume that cr ≤ cr+1 ≤ cr+2 ≤ . . . ≤ cn are
increasing as well; it will make no difference as to the value of d∗. But then the top two rows
behave exactly as in the two-row case of Lemma 4.2.9. We know that dr occurs in the rth
column from this lemma, and the induction is complete.

We have shown that d1, . . . , dw−1 retain their ordering, and it remains to show that they
retain their cocharge contributions. If any ck lies above xk, and hence dk above it, the column
has not changed and so dk does indeed retain its cocharge contribution. So, as before, we
may remove such columns and reduce to the case in which the entries are:

d1 d2 d3 · · · dw−1
dw c1 c2 · · · cw−2 cw−1
x1 x2 x3 · · · xw−1 xw

For the first column, we have that (x1, dw, c1) are in cyclic order since dw and c1 do not form
an inversion. Moreover, either x1 6= dw or x1 = dw = c1, in which case we may assume
that dw is in fact located in the second column instead, and reduce to a smaller case. So
we may assume x1 6= dw. In addition, (c1, d1, dw) are in cyclic order, with c1 6= d1 unless
c1 = d1 = dw, and if d1 = dw then we must have d1 = d2 = · · · = dw so that d1 does not
form an inversion with any element in the new tableau. We now consider three cases based
on the actual ordering of x1, dw, c1 (which are in cyclic order):

Case 1: Suppose x1 < dw ≤ c1. Then since (c1, d1, dw) are in cyclic order, either d1 is
greater than both c1 and dw or less than or equal to both. Since both c1 and dw are descents
when over x1, the cocharge contribution of d1 is unchanged in this case.

Case 2: Suppose dw ≤ c1 ≤ x1. Then in this case neither c1 nor dw is a descent when in
the first column, and the same analysis as in Case 1 shows that d1 has the same cocharge
contribution in either case.

Case 3: Suppose c1 ≤ x1 < dw. Then c1 ≤ d1 ≤ dw. If d1 is strictly greater than c1, it
forms a descent with c1 and not with dw. But note that dw is a descent when in the first
column, and c1 is not, so the total number of descents weakly beneath d1 balances out and
is equal in either case. If d1 = c1, then d1 = d2 = · · · = dw, which is impossible since then
c1 = dw. So the cocharge contribution of d1 is the same in this case as well.

This completes the proof that d1 retains the same cocharge contribution. We now show
the same holds for an arbitrary column i.

In the i-th column, we have di above ci−1 above xi. Note that (ci, di, dw) and (dw, ci−1, ci)
are in cyclic order (the latter by the above argument which showed that dw, c1, c2, . . . , cw−1
are in cyclic order given that the ci’s are arranged as above), so (ci, di, dw, ci−1) are in cyclic
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order. In particular (ci, di, ci−1) are in cyclic order. Moreover, if ci = di then di = dw = ci.
Since dw, ci−1, ci are in cyclic order we must have ci = di = ci−1 in this situation.

We also have that (xi, ci−1, ci) are in cyclic order, and by a similar argument as above we
can assume xi 6= ci−1. So either xi < ci−1 ≤ ci, ci ≤ xi < ci−1, or ci−1 ≤ ci ≤ xi. The exact
same casework as above for these three possibilities then shows that di retains its cocharge
contribution.

Proposition 4.3.1 now follows immediately from Lemmas 4.3.2 and 4.3.3 and Proposition
4.2.2.

Lemma 4.2.8 allows us to recover σ from a tableau σ↓ whose second-longest row µk is
one square shorter than its longest rows (µ1 through µk−1). We simply raise the appropriate
entry ai from row µk−1 to row µk, then do the same from row µk−2 to µk−1, and so on, and
finally insert a number n in the bottom row, where n is larger than all of the other entries
in σ↓.

Example 4.3.4. Applying the process σ → σ↓ in the tableau below, the major indexes of
the starting tableau and the ending tableau are both 10.

4 8 12
9 1 2
10 5 11
3 6 7

4 8
9 1 2
10 5 11
3 6 7

4 8 2
9 1 11
10 5 7
3 6

2 4 8
9 11 1
10 5 7
3 6

4.4 Reducing Rectangles to Columns

Using Proposition 4.3.1, we can provide a new combinatorial proof of the recurrence of Garsia
and Procesi for all rectangular shapes µ = (a, a, a, . . . , a). This also will provide the first
letter of majcode for rectangular shapes.

Theorem 4.4.1. Let A = {1, 2, . . . , n} be the alphabet with content α = (1n), and let
µ = (a, a, a, . . . , a) be a rectangle shape of size n. Then there is a weighted set isomorphism

ψ : (F (1n)
µ |inv=0; maj)→

µ∗1−1⊔
d=0

(F (1n−1)

µ(d+1) |inv=0; maj +d)

defined combinatorially by the following process.

1. Given a filling σ : µ → Z+ with distinct entries 1, . . . , n and inv(σ) = 0, let i be the
row containing the entry n. Split the filling just beneath row i to get two fillings σtop
and σbot where σbot consists of rows 1, . . . , i − 1 of σ and σtop consists of rows i and
above.
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2. Rearrange the entries of the rows of σtop in the unique way that forms a filling σ̃top for
which inv(σ̃top) = 0.

3. Apply the procedure of Proposition 4.3.1 to σ̃top, that is, removing the n from the bottom
row and bumping each entry in the last column down one row. Let the resulting tableau
be called τ .

4. Place τ on top of σbot and rearrange all rows to form a tableau ρ having inv(ρ) = 0.
Then we define ψ(σ) = ρ.

Moreover, if maj(σ)−maj(ψ(σ)) = d, then 0 ≤ d < µ∗1 and we assign ψ(σ) to the dth set in
the disjoint union.

Remark 4.4.2. Theorem 4.4.1 gives a new combinatorial proof of the recursion∑
σ:µ→Z+
inv(σ)=0

qmaj(σ) =
∑
d

qd−1
∑

ρ:µ(d)→Z+
inv(ρ)=0

qmaj(ρ)

of Garsia and Procesi for rectangular shapes µ.

The map ψ of Theorem 4.4.1 is illustrated by the example below.

7 10 12
13 14 2
15 1 5
3 4 11
6 8 9

7 10 12
13 14 2

1 5 15
3 11 4
6 8 9

7 10 12
13 14 2

1 5
3 11
6 8

4
9

7 10 12
13 14 2
1 4 5
3 9 11
6 8

We now prove Theorem 4.4.1.

Proof of Theorem 4.4.1. It is clear that ψ is a morphism of weighted sets, preserving the
statistics, so we only need to show that ψ is a bijection. To do so, we construct an inverse
map φ = ψ−1 that takes a pair (ρ, d) and returns an appropriate filling σ : µ → Z+, where
ρ : µ(d−1) → Z+ is a filling with no inversions using the letters 1, . . . , n−1, and d is a number
with 0 ≤ d ≤ µ∗1 − 1. For simplicity let h = µ∗1 be the height of µ.

Let (ρ, d) be such a pair. Consider the fillings σ1, σ2, . . . , σh formed as follows. Let σh
be the tableau obtained by inserting the number n into the top row of ρ and rearranging
the entries of the top row so that inv(σh) = 0. Let σh−1 be the tableau formed from ρ by
first moving the unique element of the (h− 1)st row given by Lemma 4.2.8 to the top row,
and then inserting n into the (h − 1)st row and rearranging all rows so that there are no
inversions again. Then, let σh−1 be formed from ρ by first moving the same element, call it
ah−1, up to the top row, then using Lemma 4.2.8 again to move an element ah−2 from row
h−2 to row h−1, and finally inserting n in row h−2 and rearranging the rows again so that
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there are no inversions. Continuing in this manner, we define each of σ1, . . . , σh likewise, and
it is easy to see that ψ(σi) = ρ for all i, by using Lemma 4.2.7 repeatedly.

Now, we wish to show that the numbers di = maj(σi) − maj(ρ) for i = 1, . . . , h form a
permutation of 0, . . . , h− 1. Let a1, . . . , ah−1 be the elements of rows 1, . . . , h− 1 that were
moved up by 1 in each of the steps as described above. By Proposition 4.3.1, the filling σ1,
whose rightmost column has entries ah−1, ah−2, . . . , a1, n from top to bottom, has the same
major index as ρ. So d1 = 0, and maj(σ1) = maj(ρ). We will now compare all other σi’s to
σ1 rather than to ρ.

We claim that the difference in the major index from σ1 to σi is the same as the difference
obtained when moving n up to row i (and shifting all lower entries down by one) in the one-
column filling having reading word ah−1, ah−2, . . . , a1, n. Then, by Carlitz’s original bijection,
we will be done, since each possible height gives a distinct difference value d between 0 and
h− 1.

To proceed, consider the total number of descents in each row. In σi, the entry n is in
the i-th row. Let τ consist of the top h− i rows of this filling, arranged so that inv(τ) = 0.
Then the top h − i − 1 rows (row 2 to h − i of τ) are the same as in σ1, with the same
descents. Thus if we rearrange every row with respect to the one beneath, including rows
i− 1 and below to form σi, each row also has the same number of descents as it does in σ1
by Lemma 4.2.6.

We now show the same is true for row i+ 1. In τ , we have ai above n, and the remaining
entries in that row are above the same set of entries they were in σ1. So the number of
descents in row i+ 1 goes down by 1 from σ1 to σi if ai > ai−1, and otherwise it remains the
same.

For rows i and below, we use Lemma 4.2.10. For any row t from 2 to i, the entries of row
t− 1 can be rearranged so that if row t is arranged on top of it with no inversions, the entry
at lies in the space above at−1 (or n lies above ai−1 in the case t = i.) The remaining entries
in the top row of this two-row arrangement are then above the same set of entries they were
in σ1, with no inversions between them, and by Lemma 4.2.6 they have the same number of
descents among them. So, the descents have only changed by what the comparison of each
at with at−1 (or n with ai−1) contributes.

Therefore, the number of descents in a given row of σi, relative to σ1, can either increase
by 1, stay the same, or decrease by 1, according to whether it does in the one-column shape
filled by ah, . . . , a1, n when we move n up to height i.

Now, for rectangular shapes, if pt is the total number of descents in row t, it is easy to
see that the total cocharge contribution (major index) of the filling is the sum of the partial
sums

p1 + (p1 + p2) + (p1 + p2 + p3) + · · ·+ (p1 + · · ·+ ph).

Since the values of pt in σi differ by 0 or ±1 from the corresponding values of σ1, it follows
that the difference di is the sum of the partial sums of these differences. But this is the same
as the difference in the one-column case we are comparing to. This completes the proof.

We now state some important corollaries that follow from Theorem 4.4.1.
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Corollary 4.4.3. Let h = µ∗1 be the height of the rectangle shape µ. Since µ is a rectangle,

the shape µ(d+1) is independent of d ∈ {0, . . . , h−1}, so let µ↓ be this shape. Let ρ ∈ F (1n−1)
µ↓ ,

so that there is a copy ρd of ρ in F (1n−1)

µ(d+1) |inv=0 for all d = 0, . . . , h− 1. Let σd = ψ−1(ρd) for

each d. Then for each i = 1, . . . , h, the largest entry n occurs in the i-th row in exactly one
of σ0, . . . , σh−1.

The next theorem, which also follows directly from the proof of Theorem 4.4.1, suggests
that the standardization map for rectangle shapes can be inherited from the standardization
map for single-column shapes described above.

Theorem 4.4.4 (Reducing rectangles to columns). For σ ∈ F (1n)
µ |inv=0 with µ a rectangle,

the value of d = maj(σ) − maj(ψ(σ)) can be determined as follows. Let σ1 be the unique

element of F (1n)
µ |inv=0 for which n is in the bottom row and ψ(σ1) = ψ(σ), so that σ1↓ =

ψ(σ1) = ψ(σ). Let ah−1, . . . , a1, n be the entries of the rightmost column of σ1 from top to
bottom. Then d is the same as the difference in the major index obtained from inserting n
into the i-th position in the one-column shape with reading word ah−1, . . . , a1.

This theorem is so crucial to the proofs of the results in the next section that it is helpful
to give the sequence of ai’s its own name. We call it the bumping sequence of σ.

Definition 4.4.5. Let σ be a filling of a rectangle shape µ having height h, with distinct
entries 1, 2, . . . , n. The bumping sequence of σ is the collection of entries a1, a2, . . . , ah−1
defined as in Theorem 4.4.4 above. If n is in the i-th row of σ, then a1, . . . , ai−1 are in rows
1 through i− 1 respectively, and ai, . . . , ah−1 are in rows i+ 1 through h.

We can also say something about the position of these ai’s given the position of the
largest entry.

Proposition 4.4.6. Let µ be a rectangle shape of height h, and let σ ∈ F (1n)
µ with its largest

entry n in row i. Then if a1, . . . , ah−1 is the bumping sequence of σ, then ai+2, . . . , ah−1 all
occur in columns weakly to the right of the n, and each aj is weakly to the right of aj−1 for
j ≥ i+ 3.

Proof. Let c1, . . . , cr, n, cr+1, . . . , cm−1 be the entries in row i from left to right. Consider the
reordering of row i given by c1, . . . , cm−1, n and order row i+ 1 with respect to this ordering.
Let the numbers in the new ordering in row i + 1 be b1, . . . , bm−1, ai. Then ai is the same
as the value of ai from Theorem 4.4.4 by Lemma 4.2.7; that is, ai would lie above n if we
ordered c1, . . . , cm−1 by size as well.

Now, since c1, . . . , cr are the first r entries in both orderings of row i, it follows that
b1, . . . , br must be the first r entries in both corresponding orderings of row i + 1. Thus ai,
not being equal to any of b1, . . . , br, must be weakly to the right of the column that n is in.

The same argument can be used to show that ai+1 is weakly to the right of ai as well,
and so on. This completes the proof.
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4.5 Three Row Shapes and Fat Hooks

We now provide a complete bijection majcode in the case that µ = (µ1, µ2, µ3) is a partition
with at most three rows.

We start with the definition of majcode for two-row shapes, which we will use as part of
the algorithm for three rows.

Lemma 4.5.1. Let µ = (µ1, µ2) be any two-row shape of size n. Then there is a weighted
set isomorphism

ψ : (F (1n)
µ |inv=0; maj)→

1⊔
d=0

(F (1n−1)

µ(d+1) |inv=0; maj +d)

defined combinatorially by the following process. Given an element σ of F (1n)
µ |inv=0, that is,

a filling of the two-row shape µ having no inversions, consider its largest entry n.

1. If the n is in the bottom row, define ψ(σ) = σ↓ as in Proposition 4.3.1.

2. If the n is in the second row, remove it and re-order the remaining entries in the top
row so that there are no inversions. Let ψ(σ) be the resulting filling.

Proof. We first show that ψ is a morphism of weighted sets. If the n we remove is in the

bottom row, then by Proposition 4.3.1, the new filling σ↓ = ψ(σ) is in F (1n−1)

µ(1)
|inv=0 and has

the same major index as σ. This means that σ↓ is in the d = 0 component of the disjoint
union

1⊔
d=0

(F (1n−1)

µ(d+1) |inv=0; maj +d),

and the statistic is preserved in this case.

Otherwise, if the n is in the second (top) row, then σ′ = ψ(σ) is in F (1n−1)

µ(2)
|inv=0. We wish

to show that the difference in major index, d = maj(σ)−maj(σ′), is 1 in this case. Indeed,
notice that the bottom row remains unchanged after removing the n, and so the difference
in major index will be the same as if we ignore the extra µ1 − µ2 numbers at the end of
the bottom row and consider just the rectangle that includes the second row instead. By
Theorem 4.4.1, it follows that d = 1. Therefore ψ is a morphism of weighted sets.

To show that ψ is bijective, we construct an inverse map φ. First, let σ′ ∈ F (1n−1)

µ(1)
|inv=0.

Then we can insert n into the bottom row, and if µ is a rectangle also bump up one of the
entries of the bottom row according to Lemma 4.2.8. This creates a filling σ of shape µ
having the same major index as σ′. We define φ(σ′) = σ, which defines an inverse map for

ψ on the restriction of ψ to ψ−1
(
F (1n−1)

µ(1)
|inv=0

)
.

Now let σ′ be a filling of shape µ(2). The shape µ(2) has a longer first row than second
row, so we can insert n into the second row and rearrange the row entries to obtain an
inversion-free filling σ of shape µ and content α. We define φ(σ′) = σ, and by Theorem 4.4.1
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applied to the two-row rectangle inside µ of width equal to the top row of µ, the major index

increases by 1 from σ′ to σ. Thus φ is an inverse to ψ on F (1n−1)

µ(1)
|inv=0, and ψ is bijective.

We now complete the entire bijection for two rows by defining a standardization map for
two-row fillings.

Definition 4.5.2. For a two-row shape µ = (µ1, µ2), we define the map

Standardize : Fαµ |inv=0 → F1n

µ |inv=0

as follows. Given a filling σ ∈ Fαµ |inv=0, define Standardize(σ) to be the filling of µ with
content (1n) that respects the ordering of the entries of σ by size, with ties broken by
reading order.

Example 4.5.3. The standardization map for two rows is illustrated below.

2 2 3 3 3

3 1 1 3 3

3 4 8 9 10

5 1 2 6 7

We can now define majcode for two-row shapes.

Definition 4.5.4. Let µ = (µ1, µ2) be a two-row shape of size n. Given a filling σ of µ, let
σ = Standardize(σ). Then we define majcode(σ) = d1d2 · · · dn where

di = maj(ψi−1(σ))−maj(ψi(σ)),

and where ψ is the map defined in Lemma 4.5.1.

Remark 4.5.5. Notice that, given a filling σ of µ having arbitrary content, we have

majcode(σ) = majcode(Standardize(σ)).

Theorem 4.5.6. The map majcode defined on two-row shapes µ = (µ1, µ2) is an isomor-
phism of weighted sets

Fαµ |inv=0 → Cµ,A

for each alphabet A and corresponding content α.

Proof. Putting together the recursions of Lemma 4.5.1 and Lemma 3.3.9, we have that for the
content (1n) corresponding to alphabet [n], the map majcode is a weighted set isomorphism

F (1n)
µ |inv=0 → Cµ,[n].

Now, let A be any alphabet with content α. Let σ be a filling of µ with content α.
Then we know majcode(σ) = majcode(Standardize(σ)), so majcode(σ) ∈ Cµ,[n]. In other
words, majcode(σ) is µ-sub-Yamanouchi. In addition, since Standardize is an injective map
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(there is clearly only one way to un-standardize a standard filling to obtain a filling with a
given alphabet), the map majcode, being a composition of Standardize and the majcode for
standard fillings, is injective as well on fillings with content α.

We now wish to show that majcode(σ) = d1, . . . , dn is A-weakly increasing, implying
that majcode is an injective morphism of weighted sets to Cµ,A. To check this, let σ̃ =
Standardize(σ). Then any repeated letter from σ will become a collection of squares that have
consecutive entries and are increasing in reading order in σ̃. Neither of the two operations of
the map ψ affects the reading order of such subcollections since consecutive integers a and
a+ 1 cannot occur in reverse order in a filling with distinct entries and no inversions. So, it
suffices to show that if the largest entry m of σ occurs i times, then d1 ≤ · · · ≤ di.

In σ̃, the m’s of σ become the numbers n− i + 1, n− i + 2, . . . , n, and occur in reading
order. Thus we remove any of these that occur in the bottom row first, and for those we have
dt = 0. We continue removing these from the bottom row until there are none left in the
bottom row. Then the remaining dt’s up to di will equal 1. Therefore, d1 ≤ d2 ≤ · · · ≤ di,
as required.

Finally, it now suffices to show that Fαµ |inv=0 as the same size as Cµ,A, since then the
injective map majcode is in fact a bijection. Note that the fillings σ of µ with content α
and inv(σ) = 0 are in one-to-one correspondence with the partitions of the alphabet A of
content α into blocks (disjoint sub-multisets) of size µ1, µ2, . . ., by considering the contents
of each row. This is the same as the number of ways of filling the conjugate shape µ∗ with
the reverse alphabet in such a way that maj = 0, by considering the contents of each column.
It follows that Fαµ |inv=0 has the same size as Fαµ |inv=0, which in turn has the same size as
Cµ,A by Theorem 3.4.3.

Corollary 4.5.7. For any two-row shape µ and content α, the map invcode−1 ◦majcode is
an isomorphism of weighted sets from Fαµ |inv=0 → F r(α)µ∗ |maj=0. This gives a combinatorial
proof of the identity

H̃µ(x; 0, t) = H̃µ∗(x; t, 0)

for two-row shapes.

Example 4.5.8. In Figure 4.3, the map majcode is applied to a two-row filling σ. The
figure shows that majcode(σ) = 100010. If we apply invcode−1 to this code using the
reversed alphabet, we obtain the filling ρ below:

4 3

2 2

2 1

Notice that maj(σ) = inv(ρ) = 2.

We now have the tools to extend our map ψ to three-row shapes.
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1 3 3

2 4 3

1 4 5

2 6 3

1 4 5

2 3

1 4

2 3

1 3

2

1

2

1

Standardize

ψ

ψ

ψ

ψ

ψ

ψ
∅

d1 = 1

d2 = 0

d3 = 0

d4 = 0

d5 = 1

d6 = 0

Figure 4.3: The map majcode for two-row shapes.

Definition 4.5.9. Let σ be any filling of a three-row shape µ = (µ1, µ2, µ3), and let σ′ be
the 3× µ3 rectangle contained in σ. Let n be the largest entry in σ. Choosing one of these
n’s, say ni, we define ψni(σ) by the following process.

1. If ni is to the right of σ′, remove the n as in the two-row algorithm to form ψni(σ).

2. If ni is in the bottom row and in σ′, then σ is a rectangle and we let ψni(σ) = σ↓.

3. If ni is in the second row and in σ′, let a2 be the top entry of the bumping sequence
of σ′. Let b be the entry in square (µ2 + 1, 2) if it exists, and let b = n + 1 otherwise.
If b ≥ a2, then remove ni and bump down a2 to the second row, and if b < a2, simply
remove ni. Rearrange the modified rows so that there are no inversions, and let ψni(σ)
be the resulting filling.

4. If ni is in the top row and in σ′, let a1, a2 be the bumping sequence of the 3 × µ3

rectangle in σ. If a2 > a1 or µ2 = µ3, then remove ni from σ. Otherwise, if a2 ≤ a1,
remove n and bump a2 up to the top row. Rearrange the modified rows so that there
are no inversions, and let ψni(σ) to be the resulting filling.
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Lemma 4.5.10. Let µ = (µ1, µ2, µ3) be any three-row shape of size n. Then the map ψ = ψn
defined above is a morphism of weighted sets when restricted to fillings having distinct entries.
That is, in the case of distinct entries there is a unique choice of n, and

ψ : (F (1n)
µ |inv=0; maj)→

2⊔
d=0

(F (1n−1)

µ(d+1) |inv=0; maj +d)

is a morphism of weighted sets.

Proof. We wish to show that ψ is a morphism of weighted sets, i.e. that it preserves the
statistics on the objects. If the n is in the bottom row, then ψ(n) is in the d = 0 component
of the disjoint union and the maj is preserved, by Proposition 4.3.1. If n is in the second row
and to the right of column µ3, then by Lemma 4.5.1 the difference in maj upon removing it
is 1 and we obtain a filling in the d = 1 component of the disjoint union.

This leaves us with two possibilities: n is in the second row and weakly to the left of
column µ3, or n is in the top (third) row. In either case, if µ2 = µ3 then the mapping is the
same as that in Theorem 4.4.1, and we get a map to either the d = 1 or d = 2 component of
the disjoint union. So we may assume µ2 6= µ3.

Case 1. Suppose that n is in the second row. We have two subcases to consider: b < a2
and b ≥ a2.

If b < a2, ψ(σ) is formed by removing the n and rearranging so that there are no
inversions. Note that any entry i to the right of n in row 2 is less than the entry directly
south of n. Furthermore, such entries i are not descents and are increasing from left to
right. Thus these entries simply slide to the left one space each to form ψ(σ) after removing
the n. So b is the only new entry to be weakly to the left of column µ3 in ψ(σ). Since b
is not a descent, the effect on the major index is the same as if we simply replaced n by
b in σ′. Consider any arrangement of the second row of σ′ in which n is at the end, and
arrange the top row relative to this ordering. Then a2 is at the end of this top row by its
definition, and so replacing n by b will make a2 a descent and thereby increase the total
cocharge contribution by 1. By Lemma 4.2.6 this is the same as the increase in the cocharge
contribution from σ to ψ(σ). Hence ψ(σ) lies in the d = 1 component of the disjoint union.

If b ≥ a2, we claim that if a1 is the entry in the bottom row of the bumping sequence,
then b < a1. If a1 is to the right of the column that n is in then the claim clearly holds.
Otherwise, let a1, d1, d2, . . . , di be the consecutive entries in the bottom row starting from a1
and ending at the entry di beneath the n, and let c1, . . . , ci be the entries in the second row
from the entry above a1 to the entry just before the n. The cj’s are all descents, and the
cj’s and dj’s are both increasing sequences. Since there are no inversions in the second row,
we have b < di. Since removing the n and bumping up a1 results in the a1 at the end of the
second row by definition, upon doing this the di’s all slide to the left one space, and the ci’s
must also remain in position and remain descents by Proposition 4.3.1. In particular, this
means that di < ci, and so b < ci as well. But then since there are no inversions it follows
that b < di−1, which is less than ci−1, and so on. Continuing, we find that b < a1 as claimed.
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Since b ≥ a2 by assumption, it follows that a2 < a1 and so removing the n and bumping
down a2 in the rectangle results in a difference in major index of 2 by Theorem 4.4.4. Note
also that if we perform this bumping in the entire filling σ, the entry a2 ends up to the left
of column µ3 + 1 since a2 ≤ b and hence it is to the left of b in the second row. Thus the
entries to the right of the rectangle are preserved, and maj(ψ(σ)) = maj(σ) − 2. It follows
that ψ(σ) lies in the d = 2 component of the disjoint union.

Case 2. Suppose n is in the top row. If a2 > a1, then removing n results in the major
index decreasing by d = 2, and so ψ(σ) is in the d = 2 component of the disjoint union.
Otherwise, a2 ≤ a1. Since µ2 6= µ3, we remove the n and bump a2 up to the top row.

Since a2 ≤ a1, by Theorem 4.4.4 we find that simply removing the n results in a decrease
by 1 in the major index. Since the top row has had a descent removed (by the proof of
Theorem 4.4.1), it follows that the empty space created in the top row was not above a
descent, for otherwise the major index would decrease by 2. Thus in particular b is not a
descent.

It follows that if σ̃ is formed by bumping up a2 and inserting n in the second row, then
the n, being the last descent in the second row, will appear among the first µ3 columns of
σ̃. In addition, since a2 ≤ a1 this results in an increase in major index by 1 from σ to σ̃, by
Corollary 4.4.3.

We now wish to show that b ≥ a2; if so, we claim removing n from σ̃ will result in a
decrease by 2 in the major index, and will also result in the tableau ψ(σ), thereby showing
that maj(ψ(σ)) = maj(σ)− 1 and so ψ(σ) is in the d = 1 component. To see that the major
index decreases by 2 on removing n, note that by Proposition 4.4.4, the effect of removing
the n is the same as replacing n by b in the one-column shape with entries a2, n, a1. If b ≥ a2
then we have that b < a1 by the same argument as in Case 1 above, and so the major index
decreases by 2. Thus it suffices to show b ≥ a2.

If a2 is not a descent of σ, this is clear, so suppose a2 is a descent of σ in the second row.
Let c be the entry directly below a2, and assume for contradiction that b < a2. Then b < c,
and furthermore the first non-descent in row 2, say e, is less than c. Note that by our above
argument we know that e lies within the rectangle σ′.

Now, we restrict our attention to σ′ and bump a2 and a1 up one row each, and consider
the ordering of the bottom row in which we place c in the column one to the left of the
column that e was contained in and shift the remaining entries to the left to fill the row.
Rearranging the new second row with respect to the first, we consider the position of a1
relative to c. If a1 is to the left of the c we have a contradiction since a1 must land in column
µ3 by Lemma 4.2.7 and the definition of bumping sequence. Therefore the entries in the
second row to the left of c are unchanged. Since a1 ≥ a2 ≥ c, and all remaining entries in
the second row are either a1 or are less than c, we have that a1 must be on top of the c in
the second row. This is again a contradiction, since this implies that a1 does not land in
column µ3. It follows that b ≥ a2, as desired.

This completes the proof that ψ is a well-defined morphism of weighted sets.

We have shown that ψ is a morphism, and we now show it is bijective.
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Lemma 4.5.11. The map ψ of Lemma 4.5.10 is an isomorphism.

Proof. We know from the lemma above that ψ is a morphism; it suffices to show that it is

bijective. First notice that the cardinality of
(
F (1n)
µ

)∣∣∣
inv=0

is(
n

µ

)
,

and the cardinality of
(⊔2

d=0F
(1n−1)

µ(d+1)

)∣∣∣
inv=0

is(
n− 1

µ1 − 1, µ2, µ3

)
+

(
n− 1

µ1, µ2 − 1, µ3

)
+

(
n− 1

µ1, µ2, µ3 − 1

)
.

Thus the cardinalities of the two sets are equal, and so it suffices to show that ψ is surjective.
To do so, choose an element ζ of the codomain. Then ζ can lie in any one of the three

components of the disjoint union
(⊔2

d=0F
(1n−1)

µ(d+1)

)
|inv=0, and we consider these three cases

separately.
Case 1: Suppose ζ lies in the d = 0 component. Then we can insert n in the bottom row

so as to reverse the map of Proposition 4.3.1, and we obtain an element σ of
(
F (1n)
µ

)
|inv=0

which maps to ζ under ψ.
Case 2: Now, suppose ζ lies in the d = 1 component. If µ2 = µ3 then µ(1) = (µ1, µ2, µ3−1)

and so we can find a filling σ of µ that maps to ζ by Proposition 4.4.1. Otherwise, the shape
of ζ is (µ1, µ2 − 1, µ3) and we wish to find a filling σ of shape µ for which ψ(σ) = ζ. Let ρ
be the filling of µ formed by inserting n into the second row and rearranging entries so that
there are no inversions. Notice that if the n lies to the right of column µ3 then ψ(ρ) = ζ and
we are done.

So, suppose n lies in the 3 × µ3 rectangle in ρ. Let a1 and a2 be the bumping sequence
of this rectangle. Since n is the rightmost descent in the second row of ρ, inserting it did
not change the cocharge contribution of the portion to the right of column µ3; there were no
descents there in σ and there are none in ρ. Let b be the entry in column µ3 + 1, row 2 of
ρ. If b < a2, then ψ(ρ) = ζ and we are done.

Otherwise, if b ≥ a2, then by the argument in Lemma 4.5.10 we know that maj(ρ) −
maj(ζ) = 2. We have that τ := ψ(ρ) is the filling formed by removing the n and bumping
a2 down to the second row, and that maj(ρ) −maj(τ) = 2. Hence maj(τ) = maj(ζ). Since
b ≥ a2, a2 lies to the left of b in τ and hence is weakly to the left of column µ3. So, let σ
be the tableau formed by inserting n in the top row of τ . Now σ has shape µ, and can be
formed directly from ρ by shifting the position of n among a1 and a2 as in Theorem 4.4.4.

It follows that maj(σ)−maj(ρ) = ±1, and so maj(σ)−maj(τ) is equal to 1 or 3. It is not
3 because τ is formed from σ by removing an n from the top row, which changes the major
index by at most 2 by Theorem 4.4.1. It follows that maj(σ) − maj(τ) = 1, and therefore
a2 ≤ a1 by Theorem 4.4.4. Thus ψ(σ) = ζ by the definition of ψ.
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Case 3: Suppose ζ is in the d = 2 component. If µ2 = µ3 then we simply insert n into ζ
in either row 2 or 3 according to Theorem 4.4.4 to obtain a tableau σ with ψ(σ) = ζ.

Otherwise, if µ2 6= µ3, ζ has shape (µ1, µ2, µ3−1). Let ρ be the tableau of shape µ formed
by inserting n in the top row of ζ. Let a1 and a2 be the entries in row 1 and 2 corresponding
to this n in the 3× µ3 rectangle contained in ρ. Then if a2 > a1, ψ(ρ) = ζ and we’re done.

If instead a2 ≤ a1, then removing n from ρ decreases its major index by 1. Since the
number of descents in the top row goes down by exactly 1 by Lemma 4.5.1, we can conclude
that the entry in row 2, column µ3 is a non-descent; otherwise removing n from ρ would
decrease the major index by 2. So, let σ be the filling formed by removing n from ρ, bumping
a2 to the top row, and inserting n in the second row. Since there are non-descents in the
rectangle we have that n lies in the rectangle in σ as well.

Finally, again by the argument used for Lemma 4.5.10 we have that a2 ≤ b where b is
the entry in row 2, column µ3 + 1 in σ. Thus ψ(σ) = ζ as desired.

We can now complete the three-row case by defining its standardization map for fillings
with repeated entries. This definition is designed to force the majcode sequences to be
A-weakly increasing.

Definition 4.5.12. Given a filling σ of µ, define Standardize(σ) as follows. First, for any
letter i that occurs with multiplicity in σ, label the i’s with subscripts in reading order to
distinguish them. If we bump one of them up or down one row, choose the one to bump
from the row in question that preserves their reading order.

Let n be the largest entry that occurs in σ. For each such nt compute dt = maj(σ) −
maj(ψni(σ)), and let d = mint({dt}). Let nr be the last n in reading order for which dr = d.
Form the filling ψnr(σ), and repeat the process on the new filling. Once there are no n’s left
to remove, similarly remove the n− 1’s, and so on until the empty tableau is reached.

Now, consider the order in which we removed the entries of σ and change the corre-
sponding entries to N,N − 1, . . . , 1 in that order, where N = |µ|. The resulting tableau is
Standardize(σ).

We can now define majcode for three-row shapes.

Definition 4.5.13. Let µ = (µ1, µ2, µ3) be a three-row shape of size n. Given a filling σ of
µ, let σ = Standardize(σ). Then we define majcode(σ) = d1d2 · · · dn where

di = maj(ψi−1(σ))−maj(ψi(σ)),

and where ψ is the map defined in Lemma 4.5.10.

Remark 4.5.14. Notice that, given a filling σ of µ having arbitrary content, we have

majcode(σ) = majcode(Standardize(σ)).
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Theorem 4.5.15. The map majcode defined on three-row shapes µ = (µ1, µ2) is an isomor-
phism of weighted sets

Fαµ |inv=0 → Cµ,A

for each alphabet A and corresponding content α.

To prove Theorem 4.5.15, we first state a structure lemma about three-row shapes with
no inversions.

Lemma 4.5.16. If the consecutive entries b1, . . . , bn in some row of a filling with no inver-
sions are directly above a weakly increasing block of squares c1 ≤ · · · ≤ cn in the row below,
then there exists a k for which b1, . . . , bk are descents and bk+1, . . . , bn are not descents.
Moreover b1 ≤ · · · ≤ bk and bk−1 ≤ · · · ≤ bn are both increasing blocks of squares.

Proof. This is clear by the definition of inversions.

In particular, the second row has one (possibly empty) block of descents and one (possibly
empty) block of non-descents. The third row has up to two blocks of descents, one for each
of the blocks in the second row, and so on.

We also need to show that the cardinalities of the sets are equal in the case of repeated
entries.

Lemma 4.5.17. We have ∣∣Fαµ |inv=0

∣∣ = |Cµ,A|
for any alphabet A with content α and any shape µ.

Proof. Given an alphabet A, the cocharge word of any filling using the letters in A has
the property that it is weakly increasing on any run of a repeated letter, where we list the
elements of A from largest to smallest. Furthermore, the cocharge word has content µ. It is
not hard to see that a word is the cocharge word of a filling in Fαµ |inv=0 if and only if it has
content µ and is weakly increasing over repeated letters of A, listed from greatest to least.

Recall that the fillings in F r(α)µ∗ |maj=0 can be represented by their inversion word, and a
word is an inversion word for such a filling if and only if it has content µ and every subsequence
corresponding to a repeated letter of the reversed alphabet is in inversion-friendly order. By
swapping the inversion-friendly order for weakly increasing order above each repeated letter,
we have a bijection between inversion words and cocharge words, and hence a bijection (of

sets, not of weighted sets) from Fαµ |inv=0 to F r(α)µ∗ |maj=0. By Theorem 3.4.3, we have that∣∣∣F r(α)µ∗ |maj=0

∣∣∣ = |Cµ,A|,

and so the cardinality of Fαµ |inv=0 is equal to |Cµ,A| as well.

We can now prove Theorem 4.5.15.
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Proof. By Lemmas 4.5.10, 4.5.11, and 3.3.9, we have that for the content (1n) corresponding
to alphabet [n], the map majcode is a weighted set isomorphism

F (1n)
µ |inv=0 → Cµ,[n].

Now, let A be any alphabet with content α. Let σ be a filling of µ with content α.
Then we know majcode(σ) = majcode(Standardize(σ)), so majcode(σ) ∈ Cµ,[n]. In other
words, majcode(σ) is µ-sub-Yamanouchi. In addition, since Standardize is an injective map
(there is clearly a unique way to un-standardize a standard filling to obtain a filling with a
given alphabet), the map majcode, being a composition of Standardize and the majcode for
standard fillings, is injective as well on fillings with content α.

We now wish to show that majcode(σ) = d1, . . . , dn is A-weakly increasing, implying that
majcode is an injective morphism of weighted sets to Cµ,A. By Lemma 4.5.17 this will imply
that it is an isomorphism of weighted sets. It suffices to show this for the largest letter m
of A by the definition of standardization. Suppose m occurs i times. We wish to show that
dj ≤ dj+1 for all j ≤ i− 1. So choose j ≤ i− 1.

Suppose dj = 0. Then by the definition of Standardize, we have that the m we removed
from ψj−1(σ) was in the bottom row. If there are still m’s in the bottom row of ψj(σ) then
dj+1 = 0 as well. Otherwise dj+1 > 0, so dj ≤ dj+1 in this case.

Suppose dj = 1. Then the m we removed from ψj−1(σ) was in either the first or second
row and there were no m’s in the bottom row. By the definition of ψ, there are therefore no
m’s in the bottom row of ψ(σ) either, and so dj+1 ≥ 1 = dj.

Finally, suppose dj = 2. Let mj be the m we remove from ψj−1(σ) to obtain dj = 2.
As in the previous case we have dj+1 ≥ 1, and we wish to show dj+1 6= 1. Let mj+1 be the
corresponding m. Since dj is minimal for ψj−1(σ), there are no m’s in ψj−1(σ) which we
can treat as the largest entry and remove according to ψ to form dj = 1. Therefore if we
removed mj+1 before mj we would also have a difference of 2 in the major index.

We consider three subcases separately for the locations of mj and mj+1: they can either
both be in the second row, mj can be in the second row with mj+1 in the third (top) row,
or they can both be in the top row. No other possibilities exist because they must occur in
reverse reading order, and cannot be in the bottom row since dj = 2.

Subcase 1: Suppose both mj and mj+1 are in the second row. Then mj+1 and mj are at
the end of the block of descents in that order, and weakly to the left of column µ3. Let b
be the entry in row 2, column µ3 + 1. Let a2 be the entry in the third row in the bumping
sequence of mj, and let a′2 be the entry in the bumping sequence of mj+1 in ψj(σ). Since
dj = 2, we have a2 ≤ b and b < m, and so a2 6= m. Therefore no new m’s are dropped down.
In other words, mj+1 is indeed the m that will be removed upon applying ψ the second time.

We now need to check that mj+1 remains to the left of column µ3 after applying ψ.
Indeed, by Proposition 4.4.4, we have that the number of descents in row 2 goes down by
one, and the number of descents in the top row remains the same, upon applying ψ to
ψj−1(σ). Since there are no m’s in the bottom row, mj+1 is the rightmost descent in the
second row of ψj(σ), and the descent we lost was mj, so mj+1 remains in its column.
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We now just need to show that a′2 ≤ b′, where b′ is the entry in row 2, column µ3 after
applying φ. Either b′ = b, b′ = a2, or b′ is the entry b0 that is bumped out from the first
µ3 − 2 columns when we drop down a2.

Consider any ordering of the first µ3 entries of the second row of ψj−1(σ) such that the
two m’s (mj+1 and mj) are at the end in that order, and also place b0 in the third-to-last
position. Now, rearrange the entries above these so that there are no inversions. We know
that a2 is at the end of the top row, above mj, by its definition. Let a be the entry above
mj+1 and let c be the entry to the left of that (if such a column exists.)

If b′ = a2, then the first µ3 − 2 entries of the second row are unchanged on applying ψ.
In our new ordering above, this means a′2 = a, and since a and a2 occur above the two m’s
in our new ordering, we have a ≤ a2. It follows that a′2 ≤ b′.

If b′ 6= a2, then b′ is either b or b0. To find a′2 in our new ordering, bumping down the
a2 can be thought of as replacing the b0 with a2 and rearranging the top row again so that
there are no inversions. The first µ3 − 3 entries remain in the same positions, and either c
or a lies above mj+1 based on which comes later in cyclic order after a2. So either a′2 = a or
a′2 = c.

We now have to show that whether a′2 is a or c, it is less than both b and b0. Notice that
a2 ≤ b0: Since mj+1 stays in its place, either a2 replaces a larger entry among the descents
in the second row, which in turn bumps out a larger entry b0 among the non-descents, or it
replaces a non-descent itself and displaces a larger non-descent b0 to its right. So if a′2 = a,
then since a ≤ a2 we have a′2 ≤ a2 ≤ b0 and also a′2 ≤ a2 ≤ b since a2 ≤ b.

Finally, if a′2 = c, then a2, a, c are in cyclic order. If c ≤ a2 we are done by the above
argument. Otherwise a2 < a ≤ c or a2 = a = c, in which case a′2 = a and we are done by
the previous case. So a2 < a ≤ c, but we already know a ≤ a2, so we have a contradiction.
It follows that a′2 ≤ b′ as desired.

Subcase 2: Suppose mj and mj+1 are in the top row. Then by Lemma 4.5.16 and since
there are no m’s in the second row by the definition of Standardize, the m’s are either in the
first or second block of descents in the third row. If either of them is in the second block, it
is clear that removing mj results in dj = 1, not 2, a contradiction. So they are both in the
first block, themselves above descents in the second row, with mj+1 and mj adjacent and in
that order.

Now, removing mj will cause the block of non-descents to its right to slide to the left
one space (since they are necessarily less than the entry beneath mj). If the second block of
non-descents in the third row is nonempty, one of these will replace the last entry above the
descents in the second row, since all of these are still less than the entry below mj and the
least among the entries to the right will replace it. In that case the number of descents to
the right of mj is unchanged, and so dj = 1, a contradiction. Thus there are no non-descents
in the second block, i.e. above the non-descents in row 2.

Because of this, removing mj simply causes all the entries to its right to slide to the left
one space, and the first descent to its right becomes a non-descent. The same then happens
when we remove mj+1 by the same argument. It follows that dj+1 = 2 in this case.
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Subcase 3: Suppose mj is in the second row and mj+1 in the top. Then the mj+1 is to
the left of mj, in the first block of descents in the third row, since otherwise we would have
a difference of 1 on removing mj+1. Moreover, as in the previous case, the top row has no
non-descents above the non-descents in row 2.

So, let a1, . . . , ar be the entries in row 3 that lie weakly to the right of mj’s column. Then
a1 is not a descent and each of a2, . . . , ar are descents. Let mj, b2, . . . , br be the entries below
them. If we rearrange these in the second row in the increasing order b2, . . . , br,mj, and then
rearrange the ai’s above them as aσ(1), . . . , aσ(r) so that there are no inversions, there are still
r−1 descents among the aσ(i)’s by Lemma 4.2.6. These descents must be aσ(1), . . . , aσ(r−1) by
Lemma 4.5.16, and the last entry aσ(r) above the mj is the entry in mj’s bumping sequence.

Now, to form ψj(σ), we remove mj and drop down aσ(r). Notice that the entries in the
top row to the left of where mj was are unchanged: consider the 3× µ3 rectangle and bump
the mj down to the bottom row according to Theorem 4.4.1. Then bump it out according
to Proposition 4.3.1, which leaves us with the same top row as that of ψj(σ). The entire
top row save for the last entry is unchanged upon applying Proposition 4.3.1, and so having
the mj inserted into the second row instead can only change the entries to the right of it in
the row above. Thus the entries to its left in the top row are unchanged, and have the same
cocharge contribution as well.

Finally, in the columns weakly to the right of the column that mj was in, the entries in
the top row are aσ(1), . . . , aσ(r−1) in some order. We claim that the entries in the second row
are formed by replacing at most one of b2, . . . , br by a smaller entry, which is either aσ(r)
or something bumped to the right by aσ(r) if aσ(r) lands in a column to the left of the bi’s.
Indeed, the only way it would be a larger entry replacing them is if a descent replaced mj,
but in this case we would have dj = 1 since the number of descents in the second row would
be the same, and the number of descents in the top row would decrease by only 1.

Therefore, the entries aσ(1), . . . , aσ(r−1) are all descents in the top row, and so removing
mj+1 still results in a difference dj+1 = 2. In particular, the descents formed by mj+1 and
one of the ai’s are removed, since the a’s all slide one position to the left, and did not form
new descents upon removing the mj+1 before the mj.

This completes the proof.

Corollary 4.5.18. For any three-row shape µ and content α, the map invcode−1 ◦majcode
is an isomorphism of weighted sets from Fαµ |inv=0 → F r(α)µ∗ |maj=0. This gives a combinatorial
proof of the identity

H̃µ(x; 0, t) = H̃µ∗(x; t, 0)

for three-row shapes.

Example 4.5.19. We demonstrate all of the above maps on the filling σ below, with its
repeated entries labeled with subscripts in reading order to distinguish them.
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3 4 6 83

5 82 21 22

81 1

We will standardize and compute majcode simultaneously. To decide which of the 8’s to
remove first, we look at which would give the smallest first majcode. This is clearly the 83

in the bottom row, so we remove it and bump down the 2.

22 3 4 6

5 82 21

81 1

To decide which of the remaining 8’s to remove next, note that they both would decrease
maj by 2, and so we remove the one that comes last in reading order, namely 82. Since 1 < 2
we bump down the 1.

22 3 4 6

5 1 21

8

Finally, when we remove the last 8, the maj decreases by 2, so we do not have to lift the 5
up to the third row.

22 3 4 6

5 1 21

We can now use the two-row algorithm to complete the process, and we find majcode(σ) =
0220100000. The corresponding inversion diagram for the reverse alphabet {1, 1, 1, 3, 4, 5, 6, 7, 7, 8}
is shown below.

4

2 1

4 3

3 2

2

1

1

1 1 1 3 4 5 6 7 7 8

Finally, we can reconstruct from this the filling ρ = invcode−1(0220100000) below.

7 8 1

6 7 1

5 4

1 3
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Note that inv(ρ) = maj(σ) = 5, and inv(σ) = maj(ρ) = 0.

Remark 4.5.20. The map above essentially uses the fact that a three-row shape is the
union of a rectangle and a two-row shape. For any shape that is the union of a rectangle
and two rows, a similar map can be used to remove the first n, and so for “fat hook” shapes
consisting of two rows plus a long column, a similar algorithm also produces a valid majcode
map.

In general, however, the resulting shape on removing the first n is no longer the union of
a rectangle and a two-row shape, and we cannot use an induction hypothesis.

However, we believe that this method may generalize to all shapes, as follows.

Problem 4.5.21. Extend the map ψ for three-row shapes to all shapes inductively, as follows.
First extend it to shapes which are the union of a three-row shape and a single column, then
use this to extend it to shapes which are the union of a three-row shape and a rectangle shape,
using Theorem 4.4.4. Then iterate this new map on any four-row shape, so majcode can
then be defined on four-row shapes, and so on.

4.6 Application to Cocharge

Proposition 4.3.1 reveals an interesting property of the cocharge statistic on words, defined
in Section 2.5.

As mentioned in Section 2.5, for any filling σ ∈ F|inv=0 we have maj(σ) = cc(cw(σ)).
Therefore, we can translate some of our results regarding such fillings to properties of words
and the‘ir cocharge. We first require the following fact.

Lemma 4.6.1. If σ ∈ F|inv=0 and w = cw(σ), the words w(i) correspond to the columns
of σ, in the sense that the letters in the subword w(i) are in positions corresponding to the
entries in column i in σ.

Proof. If w = cw(σ) and σ has alphabet A = a1 ≥ . . . ≥ an, the letters ai for which the
corresponding letter wi equals r are the entries in row r. The smallest - that is rightmost -
ai, say ai0 , for which wi = 1 is the leftmost entry of the bottom row, i.e. the bottom entry
of the first column. The second entry of the first column is then the first ai in cyclic order
after ai0 for which wi = 2. This corresponds to the 2 in the subword w(1), and similarly the
letters in w(1) correspond to the entries in the first column.

A similar argument shows that the second column corresponds to w(2), and so on.
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In particular, Proposition 4.3.1 states that if the largest entry of a filling σ ∈ F (1n)
µ |inv=0 is

in the bottom row, then we can remove it, bump down any entries in its (rightmost) column,
and rearrange the rows to get a filling with no inversions. By Lemma 4.6.1, this translates
to the following result in terms of words.

Theorem 4.6.2. Let w = w1 · · ·wn be a word with partition content µ for which w1 = 1. Let
w(1), · · · , w(µ1) be its decomposition into subwords as in Definition 2.5.14. Then w1 ∈ w(µ1),
and if w′ is the word formed by removing w1 from w and also decreasing each letter that is
in w(µ1) by one, then

cc(w) = cc(w′).

This theorem fills a gap in our understanding of cocharge, as it gives a recursive way
of dealing with words that start with 1. These are the only words that do not satisfy the
relation cc(cyc(w)) = cc(w)− 1 of Definition 2.5.13.

Example 4.6.3. Consider the word 15221432313. It has three 1’s, three 2’s, and three 3’s,
but only one 4 and 5, so to find the word w(µ1) = w(3) we can ignore the 4 and 5. The words
w(1), w(2), and w(3), ignoring the 4 and 5, are the subwords listed below:

w 1 5 2 2 1 4 3 2 3 1 3

w(1) 3 2 1

w(2) 2 1 3

w(3) 1 2 3

and so the word w′ is formed by removing the leading 1 and decreasing the 2 and 3 from
w(3). Thus

w′ = 5121432213.

We also find that cc(w) = cc(w′) = 12.
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Chapter 5

Two further results on Macdonald
q, t-symmetry

5.1 Specialization at t = 1

In this section, we give a combinatorial proof of the specialization of Problem 1.0.1 at t = 1,
namely H̃µ(x; q, 1) = H̃µ∗(x; 1, q).

By the combinatorial formula in [17], it suffices to prove that, for any content α,∑
σ:µ→Z+

|σ|=α

qmaj(σ) =
∑

ρ:µ∗→Z+

|ρ|=α

qinv(ρ). (5.1)

To prove this, we can extend either the Foata or the Carlitz bijection. We will work with
the Carlitz bijection for consistency, but the bijection can easily be built in the same manner
using the Foata bijection. Let

f = invcode−1 ◦majcode

be the Carlitz bijection on permutations of a given ordered alphabet with n distinct entries.
We first prove Equation 5.1 in the case that α = (1, 1, . . . , 1).

Proposition 5.1.1. For any fixed partition λ, we have
∑

σ q
maj(σ) =

∑
ρ q

inv(ρ) where the
first sum ranges over all fillings σ : λ→ Z+ of λ with distinct entries, and the second ranges
over all fillings ρ : λ∗ → Z+ of the conjugate partition λ∗ with distinct entries.

Proof. We extend the bijection f as follows.
Given a filling σ of λ, let v(1), v(2), . . . , v(k) be the words formed by reading each of the

columns of λ from top to bottom. Let w(i) = f(v(i)) for each i, so that maj(v(i)) = inv(w(i)).
Notice that maj(λ) =

∑k
i=1 maj(v(i)). We aim to construct a filling ρ of λ∗ such that

inv(ρ) =
∑k

i=1 inv(w(i)).



CHAPTER 5. TWO FURTHER RESULTS ON MACDONALD q, t-SYMMETRY 81

Let the bottom row of ρ be w(1). To construct the second row, let t1 = w
(1)
1 be the

corner letter. Let x1, x2, . . . , xr be the unique ordering of the letters of w(2) for which the
sequence t1, x1, x2, . . . , xr is in cyclic order. Notice that if xi is placed in the square above
t1, it would be part of exactly i relative inversions to the right of it, since x1, . . . , xi−1 would
form inversions with it and the others would not.

Now, in w(2), let ik be the number of inversions whose left element is the kth letter of
w(2). Then write xi1 in the square above t1 in order to preserve the number of inversions the

first letter is a part of. Then for the square above t2 = w
(1)
2 , similarly order the remaining

x’s besides xi1 in cyclic order after t2, and write down in this square the unique such xi2 for
which it is the left element of exactly i2 inversions in its row. Continue this process for each
k ≤ r to form the second row of the tableau.

Continue this process on each subsequent row, using the words w(3), w(4), . . ., to form
a tableau ρ. We define f(σ) = ρ, and it is easy to see that this construction process is
reversible (strip off the top row and rearrange according to inversion numbers, then strip off
the second, and so on.) Thus we have extended the Carlitz bijection to tableaux of content
α = (1, 1, . . . , 1), proving the result in this case.

Using this proposition, we prove two technical lemmata about the q-series involved. De-
fine invw(R) to be the number of relative inversions in a row R given a filling w of the row
directly beneath it.

Lemma 5.1.2. Let R be the (i + 1)st row in a partition diagram λ for some i ≥ 1. Let
w = w1, . . . , wλi be a fixed filling of the i-th row, underneath R. Let a1, . . . , aλi+1

be any λi+1

distinct positive integers. Then ∑
qinvw(R) = (λi)q!

where the sum ranges over all fillings of the row R with the integers a1, . . . , aλi+1
in some

order.

Proof. We know that ∑
r∈Sλi+1

·(a)

qinv(r) = (n)q!.

We use a similar process to that in Proposition 5.1.1 to construct a bijection φ from the set
of permutations r of a1, . . . , aλi+1

to itself such that invw(φ(r)) = inv(r).
Namely, let r = r1, . . . , rλi+1

be a permutation of a1, . . . , aλi+1
and let ik be the number of

inversions that rk is a part of in r for each k. Let x0, . . . , xλi+1
be the ordering of the letters

of r for which w1, x0, . . . , xλi+1
is in cyclic order. Let the first letter of φ(r) be xi1 , remove

xi1 from the sequence, and repeat the process to form the entire row from the letters of r.
Let φ(r) be this row.

The map φ can be reversed by using the all-0’s word for w and using the same process
as above to recover r from φ(r). Thus φ is bijective. Moreover invw(φ(r)) = inv(r) by
construction. This completes the proof.



CHAPTER 5. TWO FURTHER RESULTS ON MACDONALD q, t-SYMMETRY 82

Lemma 5.1.3. Let r be the (i + 1)st row in a partition diagram λ for some i ≥ 1. Let
w = w1, . . . , wλi be a fixed filling of the row directly underneath r. Let a1, . . . , aλi+1

be
positive integers, with multiplicities m1, . . . ,mk. Then∑

qinvw(r) =

(
λi+1

m1, . . . ,mk

)
q

=
(λi+1)q!

(m1)q! · · · (mk)q!

where the sum ranges over all distinct fillings of the row r with the integers a1, . . . , aλi+1
in

some order.

Proof. Multiplying both sides of the relation by (m1)q! · · · (mk)q!, we wish to show that

(m1)q! · · · (mk)q!
∑

qinvw(r) = (λi+1)q!.

This follows immediately by interpreting (λi+1)q! and each (mi)q! as in Lemma 5.1.2, and
assigning all possible orderings to the repeated elements and counting the total number of
relative inversions in each case.

We are now ready to prove Equation 5.1.

Theorem 5.1.4. We have ∑
σ:µ→Z+

|σ|=α

qmaj(σ) =
∑

ρ:µ∗→Z+

|ρ|=α

qinv(ρ).

Proof. We break down each sum according to the contents of the columns of µ and the rows
of µ∗, respectively. For a given multiset of contents of the columns, where the entries in the
i-th column have multiplicities m

(i)
1 , . . . ,m

(i)
ki

, we have that

∑
σ

qmaj(σ) =
∏
i

(
µ′i

m
(i)
1 , . . . ,m

(i)
ki

)
q

,

where the sum ranges over all fillings σ with the given column entries. By Lemma 5.1.3, we
have that the corresponding sum over fillings ρ with the given contents in the rows of µ∗ is
the same: ∑

ρ

qinv(ρ) =
∏
i

(
µ′i

m
(i)
1 , . . . ,m

(i)
ki

)
q

.

Summing over all possible choices of the entries from α for each column of µ, the result
follows.
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5.2 Hook Shapes

We now demonstrate a bijective proof of Problem 1.0.1 in the case that µ is a hook shape ,
that is, µ = (m, 1, 1, 1, . . . , 1) for some m. There is a known combinatorial formula for the
q, t-Kostka poloynomials in the case of hook shapes µ given by Stembridge [36], but it does
not involve the inv and maj statistics.

The symmetry of inv and maj was demonstrated for fillings of hook shapes having distinct
entries in [8], and makes use of the Foata bijection. In this section, we instead use the Carlitz
bijection to prove the result, which will hold for arbitrary fillings by the results in Section
3.2.

Lemma 5.2.1. We have the following two facts about one-column and one-row shapes re-
spectively.

• Given a filling σ of a one-column shape, suppose A = a1 ≥ · · · ≥ an is the alphabet of
its entries written in the standardization order as in Proposition 3.2.7, from greatest
to least. Then if ai is the bottommost entry in σ, then the first 0 in majcode(σ) is in
position i from the left.

• Given a filling ρ of a one-row shape, suppose A = a1 ≤ · · · ≤ an is the alphabet of its
entries written in order with ties broken in reading order. Then if ai is the leftmost
entry in σ, then the first 0 in invcode(σ) is in position i from the left.

Proof. For the filling σ of a one-column shape, recall that we define majcode by removing
the entries one at a time from greatest to least in standardization order. The only time the
difference in major index is 0 is when the entry is on the bottom, and so the first time this
occurs is when we remove the bottommost entry ai from the filling (i.e. at the i-th step).

For the filling ρ of a one-row shape, note that the leftmost entry ai always has an inversion
code number of 0. Moreover, if any entry b to its right also has an inversion code number of
0, then b ≥ ai for otherwise it would be the smaller entry of an inversion (with ai itself). It
follows that ai is the smallest entry whose inversion code number is 0.

We now define a map from fillings of hook shapes to pairs of partial codes that we call
hook codes.

Definition 5.2.2. Let σ be a filling of a hook shape µ. We define the hook codes of σ
to be the pair of codes consisting of the invcode of its bottom row and the majcode of its
leftmost column, along with the data of which entries occur in the row and which occur in
the column.

Notice that, by the standardization orderings on the row and column of µ as defined in
Section 3.2, if the corner square in µ is one of the repeated letters a of the filling, then it is
considered the largest a in its column and the smallest a in its row.

Thus we can define a standardization ordering on fillings of hook shapes: we order the
letters from smallest to largest, with the following tie-breaking rules.
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• If two copies of the letter a appear in the left column, the tie is broken as in Section
3.2.

• If they appear in the bottom row, then the leftmost a comes first.

• If one appears in the column and the other in the row, the one in the column comes
first.

This enables us to represent hook codes visually, as shown in the following example.

Example 5.2.3. Consider the filling σ of a hook shape shown below. The 2 in the corner is
considered to be greater than the 2 above it and less than the 2 to its right. To represent the
hook code of σ, we write the entries of the filling in the standardization ordering, and write
the invcode and (the reverse of) majcode of the bottom row and left column respectively
underneath the corresponding letters.

2 5 3 2 5
1
2
4 1 2 2 2 3 4 5 5

invcode 0 2 1 0 0
majcode 0 1 0 2

Notice that the majcode is written backwards, because the entries are in increasing order.

We now characterize the pairs of codes that correspond to fillings of hook shapes.

Lemma 5.2.4. Let µ be a hook shape of height h and width l with h + l − 1 = n, and let
A = {a1 ≤ · · · ≤ an} be an ordered multiset. A pair of partial codes (X, Y ) of lengths l and
h respectively is a hook code of some filling σ of µ if and only if the four conditions below
are satisfied.

1. The leftmost 0 of X matches the rightmost 0 of Y .

2. The two codes do not overlap in any other position, and every position is part of at
least one of the two codes.

3. The code X is an element of Cl and is A-weakly increasing, where we restrict A to the
l letters corresponding to the positions of the entries of X.

4. The code Y , when read backwards, is an element of Ch and is A-weakly increasing,
where we restrict A to the h letters corresponding to the positions of the entries of Y .

Proof. First we show that the hook code of any filling σ of µ satisfies the four conditions.
Condition 1 follows immediately from Lemma 5.2.1, because the major index code is written
in reverse order. Condition 2 is clear since every entry is in either the row or the column and
only the corner square is in both. Conditions 3 and 4 follow immediately from the definition
of hook codes.
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Now, suppose we have a pair of codes satisfying Conditions 1–4. Then there is a unique
way to form a row and a column of entries based on their elements, since they are both valid
Carlitz codes and are A-weakly increasing by Conditions 3 and 4. Because of Condition 1
and Lemma 5.2.1, the leftmost entry of the row is the same as the bottommost entry of the
column, and so we can put them together to form a filling σ of a hook shape. Because of
Condition 2, the hook shape µ has the appropriate size and shape, and we are done.

Using Lemma 5.2.4, we can now define our bijection.

Definition 5.2.5. For any hook shape µ and content α, let φ : Fαµ → F r(α)µ∗ be the map
defined by interchanging the pair of hook codes of a given filling and writing them backwards,
and also reversing its alphabet.

Example 5.2.6. Starting with the tableau in Example 5.2.3, if we reverse the alphabet,
interchange invcode and majcode, and write the codes in backwards order, then we obtain
the filling and pair of codes below. It follows that the filling in Example 5.2.3 maps to the
filling below under φ.

4 5 2 4
1
1
3
4

1 1 2 3 4 4 4 5
invcode 2 0 1 0
majcode 0 0 1 2 0

Theorem 5.2.7. We have that

maj(φ(σ)) = inv(σ)

and
inv(φ(σ)) = maj(σ)

for any filling σ of a given hook shape µ. Moreover, φ is a bijection from Fαµ to F r(α)µ∗ for
any content α.

Proof. Clearly φ interchanges inv and maj, since it interchanges the invcode and majcode
of the filling. To show it is a well-defined map into fillings of the conjugate shape, note that
reversing and interchanging the codes and reversing the alphabet results in a pair of codes
that satisfy conditions 1-4 of Lemma 5.2.4.

Finally, φ is a bijection - in fact, it is an involution - because the operations of reversing
the alphabet, interchanging the pair of codes, and writing the codes in the reverse order are
all involutions.

Corollary 5.2.8. The map φ above satisfies the conditions of the Problem 1.0.1, proving
combinatorially that

H̃µ(x; q, t) = H̃µ∗(x; t, q)

when µ is a hook shape.
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