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Abstract

The 3x+ 1 Conjecture asserts that the T -orbit of every positive integer contains 1,
where T maps x 7→ x/2 for x even and x 7→ (3x + 1)/2 for x odd. A set S of positive
integers is sufficient if the orbit of each positive integer intersects the orbit of some
member of S. In [9] it was shown that every arithmetic sequence is sufficient.

In this paper we further investigate the concept of sufficiency. We construct suffi-
cient sets of arbitrarily low asymptotic density in the natural numbers. We determine
the structure of the groups generated by the maps x 7→ x/2 and x 7→ (3x + 1)/2 mod-
ulo b for b relatively prime to 6, and study the action of these groups on the directed
graph associated to the 3x + 1 dynamical system. From this we obtain information
about the distribution of arithmetic sequences and obtain surprising new results about
certain arithmetic sequences. For example, we show that the forward T -orbit of every
positive integer contains an element congruent to 2 mod 9, and every non-trivial cycle
and divergent orbit contains an element congruent to 20 mod 27. We generalize these
results to find many other sets that are strongly sufficient in this way.

Finally, we show that the 3x + 1 digraph exhibits a surprising and beautiful self-
duality modulo 2n for any n, and prove that it does not have this property for any
other modulus. We then use deeper previous results to construct additional families
of nontrivial strongly sufficient sets by showing that for any k < n, one can “fold” the
digraph modulo 2n onto the digraph modulo 2k in a natural way.
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1 Introduction

The 3x + 1 Conjecture, also known as the Collatz Conjecture, is a famous open problem
in discrete dynamics. Attributed to L. Collatz in the 1930’s, the conjecture states that if
T : Z→ Z is defined to be

T (x) =

{
x
2

x is even

(3x+ 1)/2 x is odd
,

then for any positive integer x, there is a nonnegative integer k for which T k(x) = 1. In
other words, the T -orbit of x (i.e. the sequence x, T (x), T (T (x)), . . .) contains the number 1
among its elements.

Historically, the Collatz problem has been broken down into two smaller conjectures:

Nontrivial Cycles Conjecture: There are no T -cycles of positive integers
other than the cycle containing 1.

Divergent Orbits Conjecture: There are no divergent T -orbits of positive
integers.

Together, these two statements suffice to prove the 3x+1 conjecture. Both remain unresolved.
There has recently been progress towards reducing the 3x + 1 problem to a seemingly

simpler problem. We say that positive integers x and y merge if there exist nonnegative
integers k and j for which T k(x) = T j(y). A set of positive integers S is said to be sufficient
if for every positive integer x, there is an element y ∈ S that merges with x. Notice that
to prove the 3x+ 1 conjecture, it suffices to show that the T -orbit of every element of some
sufficient set S contains 1 since every integer that merges with an element of S must also
enter the cycle 1, 2 as well. In [9], the third author shows that every arithmetic sequence is
sufficient.

We can visualize these notions by drawing a directed graph associated to the dynamical
system T : Z → Z. Let T0(x) = x/2 and T1(x) = (3x + 1)/2, and define the 3x + 1 graph
G to be the two-colored directed graph on the positive integers having a black edge from x
to z if T0(x) = z, and a red edge (which are also dashed in the images in this paper for the
benefit of those reading a black and white printout) from x to z if T1(x) = z. (See Figure
1.1.) Then two integers merge if and only if they are in the same connected component of
G, and a sufficient set is a set of nodes which intersects every connected component of G.
The 3x+ 1 conjecture is true if and only if G is connected.

In this paper we undertake a deeper investigation into the distribution of arithmetic
sequences in the 3x + 1 graph and properties of sufficient sets in general. Define a forward
tracing path to be a path in G along the directed arrows (which is simply an initial segment
of a T -orbit), and a back tracing path to be a path in G against the direction of these arrows.

For brevity, we write “a ≡
b
c” in place of “a ≡ c (mod b)” throughout. Using this

notation, we recall the well-known fact that if x ≡
3

0, then the only way to form a back

tracing path starting from x is by applying T−1
0 repeatedly, forming a single reverse chain of

black arrows in G. Moreover, every element of this chain is also divisible by 3. Conversely,
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Figure 1.1: A portion of the 3x+ 1 graph G near 1.

every positive integer x forward traces to a number that is not divisible by 3, at which
point all future points in its orbit are not divisible by 3. Thus, the back tracing paths from
multiples of 3 are well-understood, and for convenience we also define the pruned 3x + 1
Graph, denoted G̃, to be the subgraph of G consisting of the positive integers relatively
prime to 3. A portion of the G̃ is illustrated in Figure 5.1.

In [9], in order to prove that every arithmetic sequence is sufficient, the third author
shows that for any positive integers a and d and for every node x in the pruned 3x+ 1 graph
G̃, there is a back tracing path from x to some y in G with y ∈ {a+ dn | n ∈ Z}. (Since any
x in the general 3x+1 graph has a forward tracing path to some x′ in the pruned graph, this
shows that every x in G merges with some y in the given arithmetic sequence.) In section 4,
we strengthen these results by finding bounds on the minimum number of red arrows needed
to back trace from any positive integer x to an integer y in a desired arithmetic sequence.
These results rely on an understanding of the 3x + 1 groups Gb generated by T0 and T1

modulo an integer b relatively prime to 6. We completely classify these groups in section 3.
For specific moduli d, we can obtain even stronger and more surprising results. In section

5, we describe infinite back tracing paths as elements of an inverse limit and show that every
such back tracing path must contain an integer congruent to 2 mod 9. We use similar
methods to show that in fact every T -orbit of positive integers must also contain an element
congruent to 2 mod 9. For this reason, we say that the set of integers congruent to 2 mod 9
is strongly sufficient.

In Section 6, we define Γd to be the finite directed graph obtained by taking the 3x + 1
graph G mod d. We use these graphs to determine graph-theoretic criteria for a set to be
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strongly sufficient, and we provide several families of such sets S that must intersect every
nontrivial T -orbit or infinite back tracing path. We also demonstrate that finding strongly
sufficient sets is a plausible way to approach the Nontrivial Cycles Conjecture.

Finally, in Section 7, we show that the graphs Γ2n exhibit a surprising and beautiful
self-duality (given by a map first defined in [8]) and that these are the only Γd having this
property. We also use results from [10] and [6] to show that for any k < n, one can fold
Γ2n onto Γ2k in a natural way. We combine these deeper tools with our results on strong
sufficiency to obtain an infinite family of strongly sufficient sets consisting of unions of residue
classes modulo a power of 2.

2 Sparse sufficient sets

Since every arithmetic sequence is sufficient, the arithmetic sequences form a family of suf-
ficient sets with members having arbitrarily small positive density in the integers. It is
natural to ask if there is a sufficient set of density zero in the positive integers. We answer
this question in the affirmative as follows.

Theorem 2.1. For any function f : N → N and any positive integers a and d, the set of
integers

{2f(n)(a+ dn) | n ∈ N}
is a sufficient set.

Proof. We know that the set {a + dn | n ∈ N} is sufficient. So, given a positive integer
x, there is a number of the form a + dN that merges with x. Thus, the positive integer
2f(N)(a + dN), which maps to a + dN after f(N) iterations of T , also merges with x. This
completes the proof.

By taking f(n) to be sufficiently large relative to n, we can use this to produce infinitely
many sufficient sets of density zero in the positive integers. We state one family of these
below.

Corollary 2.2. For any fixed a and d, the sequence (a + dn) · 2n is a sufficient set with
asymptotic density zero in the positive integers.

Thus, to prove the 3x+ 1 conjecture, it suffices to show that the T -orbit of every number
in the density-zero set {(a + dn) · 2n | n > 0} contains 1. This method can also be used
to find arbitrarily sparse sufficient sets containing only odd numbers (for example, the set{(

22f(n)+1(a+ 3dn)− 1
)
/3 | n ∈ N

}
for a ≡

3
2 and f : N → Z+). Notice, however, that the

elements of any such sufficient sets eventually map to a + dn, so one still effectively needs
to show that the elements of the arithmetic sequence {a + dn} map to 1 under T . Thus
we turn our attention to this problem next by investigating the actual distribution of such
sequences in the 3x+ 1 graph.
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3 Classification of the groups Gb

For any positive integer b relatively prime to 6, the functions T0 and T1 act as permutations
on Z/bZ. We begin by completely classifying the permutation groups Gb generated by these
two permutations.

Let Cr denote the cyclic group of order r. Also let

AGL(1, b) = {x 7→ cx+ d | d ∈ Z/bZ, c ∈ (Z/bZ)∗}

be the group of affine maps mod b under composition, and note that Gb can be viewed as
the subgroup of AGL(1, b) generated by T0(x) = x/2 and T1(x) = (3x+ 1) /2. Moreover,
the subgroup {x 7→ x+ a | a ∈ Z/bZ} is isomorphic to the cyclic group Cb, and is a normal
subgroup of AGL(1, b). It will also be useful to consider the element P (x) = x+ 1 of Gb.

Theorem 3.1. Let b be a positive integer relatively prime to 2 and 3. Write the prime
factorization b = pe11 p

e2
2 · · · penn . For all i ∈ {1, . . . , n}, let si be the multiplicative order of

2 mod peii , let ti be the multiplicative order of 3 mod peii , and let ai = lcm(si, ti). Then

Gb
∼= Cb oM

where
M = Ca1 × Ca2 × · · · × Can .

In the statement above, the action on Cb defining the semidirect product is the action of
AGL(1, b) by conjugation on the subgroup

{x 7→ x+ a | a ∈ Z/bZ} ∼= Cb.

Proof. In [9], it was shown that the function P (x) = x + 1 is an element of the group
generated by T0 and T1. This function clearly has order b and generates the cyclic subgroup
Cb = {x 7→ x + d : d ∈ Z/bZ}. This is a normal subgroup, since it is a fixed set under
conjugation.

Since x 7→ x+1 is in Gb, and T0 and T1 can be expressed in terms of the maps x 7→ x+1,
x 7→ 2x, and x 7→ 3x, we have that Gb ⊆ 〈x 7→ x+ 1, x 7→ 2x, x 7→ 3x〉 as a subgroup of
AGL(1, b). Moreover, 2x and 3x can be generated using T0, T1, and x+ 1, so in fact

Gb = 〈x 7→ x+ 1, x 7→ 2x, x 7→ 3x〉 .

The first generator corresponds to the cyclic subgroup Cb. We now only need to see what
we obtain from multiplication by 2 and 3.

By the Chinese Remainder Theorem, we have Z/bZ ∼= Cp1e1 × Cp2e2 × · · · × Cpnen . Thus
we can look at the action of multiplication by 2 and 3 on each component, and the action
on the whole group Gb will be the direct product of each of these.

Let p ∈ {p1, p2, . . . , pn} and e be the corresponding exponent. Since b is relatively prime
to 2, we know that p is an odd prime. Thus (Z/peZ)∗, the group of units of Z/peZ, is
cyclic. Let s be the order of 2 and t the order of 3 in (Z/peZ)∗. Since the subgroup lattice
of (Z/peZ)∗ is isomorphic to the divisor lattice of φ(pe), we have that ‖ 〈2, 3〉 ‖ = lcm(s, t),
which concludes the proof.
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While Theorem 3.1 describes the overall structure of the groups, it would be useful to
understand it as a finitely generated group in terms of the generators T0 and T1 (mod b).
We begin by calculating the orders of T0 and T1 in Gb. To do so, we introduce the auxiliary
function E.

Definition. Let E0(x) = 3x/2 and E1(x) = (x+ 1)/2, and define E : Z+ → Z+ by

E(x) =

{
E0(x) x is even

E1(x) x is odd
.

Let P (x) = x + 1. Then straightforward calculation shows that E = PTP−1, and in
particular that E0 = PT1P

−1 and E1 = PT0P
−1. Thus, the E-orbit of a positive integer

x > 1 can be obtained by taking the T -orbit of x − 1 and adding 1 to each element of
the orbit. Therefore the 3x + 1 conjecture is equivalent to showing that the E-orbit of any
positive integer x > 1 contains the integer 2.

Remark 3.2. The conjugacy between T and E via P makes computation of orbits somewhat
easier: to compute the E-orbit of a positive integer x > 1, one first replaces any 2’s in the
prime factorization of x with 3’s, one at a time, until the result is odd. At that point, one
divides by 2 and rounds up to the nearest integer, and repeats the process. For instance, the
E-orbit of 8 is

8, 12, 18, 27, 14, 21, 11, 6, 9, 5, 3, 2, . . . ,

which corresponds to the T -orbit of 7:

7, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1, . . . .

Lemma 3.3. Let b be a positive integer relatively prime to 2 and 3. The order of T0 in Gb is
equal to the order of 2 modulo b, and the order of T1 in Gb is equal to the order of 3

2
modulo

b.

Proof. The order of T0 in Gb is equal to the order of 1/2 modulo b, which is equal to the
order of 2 modulo b.

For T1, we have that T is conjugate to E on the positive integers via the map x 7→ x+ 1.
Therefore, T and E are also conjugate when considered as maps on Z/bZ. In particular, the
conjugacy sends T0 to E1 and T1 to E0.

Now, the order of T1 in Gb is equal to the order of E0 in Gb by the conjugacy, and the
order of E0 is equal to the order of 3

2
modulo b (since E0(x) = 3

2
x). This completes the

proof.

In [9], it was shown that Gb acts transitively on Z/bZ, by showing that the map P (x) =
x+ 1 is in Gb. It is easy to check that the shortest representation for P map in terms of the
generators T0 and T1 is

T−2
0 T1T0T

−1
1 T0 = P (3.1)

and the corresponding result for the map E is

E−2
1 E0E1E

−1
0 E1 = P.
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4 Uniformity in the distribution of arithmetic sequences

For this section and the next, we require some notation and basic results involving back
tracing. We generally follow the notation used in Wirsching’s book [12].

Define the set of feasible vectors to be

F =
∞⋃
k=0

Nk+1.

Let s ∈ F . Then s = (s0, s1, . . . , sk) for some nonnegative integers k and s0, s1, . . . , sk. The

length of s, written l (s), is k. The norm of s, written ||s||, is l (s) +
l(s)∑
i=0

si.

For s ∈ F with s = (s0, s1, . . . , sk), Wirsching calls the function vs : Z+ → Q given by
vs = T−s00 ◦ T−1

1 ◦ T−s10 ◦ T−1
1 ◦ · · · ◦ T−1

1 ◦ T−sk0 a back tracing function. If vs (x) ∈ Z+ then
we say s is an admissible vector for x, and that the corresponding back tracing function is a
admissible for x. Define

E (x) = {s ∈ F : s is admissible for x} .
Wirsching also shows that if l(s) = m > 0, then there is a unique congruence class a

mod 3m with a relatively prime to 3 such that, if x is any positive integer, s is an admissible
vector for x if and only if x ≡

3m
a.

Naturally it would be useful to strengthen the existence theorems in [9] to determine how
a given arithmetic sequence is distributed in the 3x + 1 graph. More precisely, we wish to
determine bounds for how far away the nearest element in a given arithmetic sequence a+dN
is to a given positive integer x. We do so by first making precise the general bounds that
follow from the proof of [9], Lemma 3.8, and strengthen those bounds for the special case
where d is relatively prime to 2 and 3. In every case we show that the bounds obtained are
independent of the choice of x, proving that arithmetic sequences are in this sense uniformly
distributed in the 3x+ 1 graph.

4.1 Back tracing modulo an arbitrary modulus d

We begin with the following bound for the length of a back tracing sequence to any modulus
d.

Theorem 4.1. Let d > 1 be a positive integer, and write d = 2n3mb where b is relatively
prime to 2 and 3. Let a ∈ N with a < d, and let f be the order of 3/2 modulo b. Then any
x ∈ N− 3N back traces to an element of a+ dN via an admissible sequence of length at most
2(b− 1)f + n+ 1.

Remark 4.2. This bound depends only on the modulus d and not on the starting position
x. This shows that the arithmetic sequence a + dN is, in some sense, “evenly distributed”
throughout the 3x+ 1 graph.

In order to prove this we first prove the case where n = m = 0, obtaining a stronger
bound in this situation. The construction follows that of [9], Lemma 2.8. We sketch the
proofs here and refer the reader to [9] for details.
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Lemma 4.3. Let b be a positive integer relatively prime to 2 and 3, and let a ∈ {0, 1, . . . , b−
1} be any residue modulo b. Let f be the order of 3/2 modulo b. Then for any positive integer
x relatively prime to 3, there exists a admissible vector s ∈ E (x) for which vs(x) ≡

b
a and

vs(x) 6≡
3

0, such that

l(s) ≤ (b− 1)f. (4.1)

Proof. From equation (3.1) we have that T−2
0 ◦ T1 ◦ T0 ◦ T−1

1 ◦ T0(n) = n+ 1 for any n, and
so trivially we have that

T−2
0 ◦ T1 ◦ T0 ◦ T−1

1 ◦ T0(n) ≡
b
n+ 1.

Let f be the order of 3
2

modulo b, and let e be the order of 2 modulo b. Notice that since
3 is not congruent to 2 mod b, f is at least 2, and similarly e is at least 2. We also have
T0 = T 1−e

0 and T1 = T 1−f
1 in Gb. Substituting, we obtain

T−2
0 ◦ T1 ◦ T0 ◦ T−1

1 ◦ T0 = T−2
0 ◦ T 1−f

1 ◦ T 1−e
0 ◦ T−1

1 ◦ T 1−e
0 .

Let s1 = (2, 0, 0, . . . , 0︸ ︷︷ ︸
f−2

, e− 1, e− 1), so that

vs1(n) = T−2
0 ◦ T 1−f

1 ◦ T 1−e
0 ◦ T−1

1 ◦ T 1−e
0 (n) ≡

b
n+ 1.

Notice that l(s1) = f .
Now, let x be a positive integer relatively prime to 3, and define s2 = (0, 0)·s1 · s1 · · · · · s1︸ ︷︷ ︸

b

.

Since 2 is a primitive root mod every power of 3 (see, for instance, [5]), there is a positive
integer k for which s2 ∈ E(2kx). Hence s2 · (k) ∈ E(x). It follows that any vector of the form
s1 · s1 · · · · s1 · (k), where the number of copies of s1 is at most b, is in E(x) as well.

Let c = T−k0 (x) mod b, and let s = s1 · s1 · · · · · s1︸ ︷︷ ︸
(a−c) mod b

·(k). Then we have

vs(x) ≡
b

c+ (a− c)
≡
b

a

and

l(s) = ((a− c) mod b) · f
≤ (b− 1)f.

Finally, to see that vs(x) 6≡
3

0, let t = (a− c) mod b and let

s3 = (0, 0) · s1 · s1 · · · · · s1︸ ︷︷ ︸
b−t

.

Then s3 · s = s2 · (k), which is an admissible sequence for x, and so s3 is admissible for vs(x).
Since s3 has length at least 1, we have that vs(x) is not divisible by 3, as desired.
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With this Lemma in hand, we can now prove Theorem 4.3.

Proof. First, by Lemma 4.3, we can back trace from x to some integer y 6≡
3

0 that is congruent

to 0 modulo b via an admissible sequence of length at most (b − 1)f . We can then apply
T−n0 to y to obtain an integer z ∈ N− 3N that is congruent to 0 modulo 2nb.

We wish to back trace from z to an integer w with w ≡
2nb

a and w ≡
3m

a. Following the

arguments in [9], we can find a sequence s ∈ E (z) of length at most (b − 1)f + n + 1 for
which vs(z) ≡

2nb
a. Since 2 is a primitive root mod 3l(s)+m, there is a power of 2, say 2k, such

that 2kz also has s as an admissible vector and moreover vs(2
kz) ≡

3m
a (c.f. [9], Lemma 3.7).

Thus, replacing s by s · (k), we can set w = vs(z), and we are done.
The total length of the back tracing sequence from x to w is then at most (b− 1)f + (b−

1)f + n+ 1 = 2(b− 1)f + n+ 1, as desired.

4.2 Back tracing when 2 is a primitive root of the modulus

We can improve this bound in some special cases, particularly when 2 is a primitive root
modulo b. Since the only integers that can have a primitive root are 2, 4, pr, and 2pr where
p is an odd prime, this implies that b must be a power of an odd prime.

Theorem 4.4. Let r be a positive integer and p be an odd prime greater than 3 such that 2
is a primitive root modulo pr. Let a be any residue modulo pr relatively prime to p. Then
for any positive integer x relatively prime to 3, there exists a admissible vector s ∈ E (x) for
which vs(x) ≡

pr
a and vs(x) 6≡

3
0, such that

l(s) ≤ 1.

Proof. If x is relatively prime to p then since 2 is a primitive root, there exists k such that
2kx ≡

pr
a. Clearly 2kx 6≡

3
0 since x 6≡

3
0. Thus taking s = (k) gives the desired result.

If x is not relatively prime to p then since 2 is a primitive root mod 9 we can choose
k ≥ 0 such that 2k+1x ≡

9
4. So T−1

1 ◦ T−k0 (x) = 2k+1x−1
3

is an integer that is relatively prime

to both 3 and p. Thus there exists j such that T−j0 ◦T−1
1 ◦T−k0 (x) = 2j

(
2k+1x−1

3

)
≡
pr
a. Thus

taking s = (j, k) gives the desired result.

Theorems 4.3 and 4.4 allow us to back trace to an integer in a desired congruence class
mod b that is also not divisible by 3, so that we can continue back tracing to obtain more
elements of the same congruence class. Thus, there is an infinite back tracing sequence
x1, x2, . . . of elements in G, satisfying xi = T (xi+1) for all i, that contains infinitely many
elements congruent to a mod b. In section 5, we study infinite back tracing sequences in
further depth.

5 Infinite back tracing and inverse limits

We first define infinite back tracing sequences in terms of inverse limits of level sets in G,
defined as follows.

9



Definition. Let x be a positive integer and let k be a nonnegative integer. The kth level
set of x, which we denote Lk(x), is the set of all positive integers y for which T k(y) = x.

Remark. This is a generalization of the notion of level set defined in [1], which referred only
to the level sets of 1.

Definition. Let x be a positive integer. Consider the directed system {Lk(x)}k≥0 where the
map from Lk+1(x) to Lk(x) is given by T . We define

Ix = lim
←−
Lk(x).

We also use the phrase infinite back tracing sequence from x to refer to an element of Ix, or
simply infinite back tracing sequence when x is understood.

Some of the elements of the sets Ix are rather simple to describe. For instance, recall that
when x is divisible by 3, one can only ever apply T−1

0 , as the result will never be congruent
to 2 mod 3. Thus the only infinite back tracing sequence from x = 3y is x, 2x, 4x, 8x, . . ..
For this reason, we primarily are concerned with the elements of the 3x + 1 graph which
are not divisible by 3, and we define a modified version of the inverse limits for the pruned
3x+ 1 graph G̃, shown in Figure 5.1.
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Figure 5.1: A portion of the pruned 3x+ 1 graph G̃ near 1.

Definition. Let G̃ denote the restriction of the 3x+1 graph to the positive integers relatively
prime to 3, and let x be one such positive integer. Let L̃k(x) be the set of all positive integers

y in G̃ for which T k(y) = x. Then we define

Ĩx = lim
←−
L̃k(x).
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Notice that Ĩx is strictly contained in Ix for every x.

5.1 Structure of the inverse limits

We now investigate the structure of the inverse limit sets Ix. To start, just as the (forward)
parity vector of an integer determines its congruence class mod every power of 2, we can show
that the parity of the values of an infinite back tracing sequence from x having infinitely
many 1’s determines the congruence class of x mod every power of 3, and hence determines
the integer uniquely.

Definition. Let x be a positive integer. A back tracing parity vector (from x) is an infinite
sequence of 0’s and 1’s that is congruent mod 2 to some infinite back tracing sequence from
x.

Since we can expand any (s0, s1, . . . , sn) ∈ F to the parity vector

(0, . . . , 0︸ ︷︷ ︸
s0

, 1, 0, . . . , 0︸ ︷︷ ︸
s1

, 1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
sn

, 1)

and vice versa, we can say that a finite back tracing parity vector is admissible for x if and
only if the corresponding element of F is. An infinite back tracing parity vector is admissible
for x if and only if every initial finite subsequence is.

Notice that for any 3-adic integer x, we can define T−1
0 (x) = 2x and for x ≡

3
2 we can

also define T−1
1 (x) = 2x−1

3
. Hence the notion of a back tracing parity vector can be naturally

extended to the 3-adic integers. Furthermore, for any positive integer k a 3-adic integer α is
congruent to a unique ordinary integer a modulo 3k, and thus a given back tracing vector is
admissible for α if and only if it is admissible for a.

Theorem 5.1. Let x be a 3-adic integer, and suppose v is a back tracing parity vector for x
containing infinitely many 1’s. If v is also a back tracing parity vector for the 3-adic integer
y, then x = y.

Proof. Let vk be the smallest initial segment of the sequence v containing k 1’s. Since vk
is admissible for both x and y, and since there is a unique congruence class modulo 3k for
which vk is admissible, we must have x ≡

3k
y. Since vk exists and is finite for every k by

assumption, it follows that x ≡
3k
y for every k and thus x = y.

Since the positive integers embed naturally in the 3-adics, we can easily deduce a similar
result for the positive integers for our purposes.

Corollary 5.2. Let x be a positive integer, and suppose v is a back tracing parity vector
for x containing infinitely many 1’s. If v is also a back tracing parity vector for the positive
integer y, then x = y.

We now study properties of the back tracing vectors themselves. For the next result, we
consider a back tracing parity vector as the binary expansion of a 2-adic integer.

Theorem 5.3. Every back tracing parity vector, considered as a 2-adic integer, is either:
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(a) a positive integer (i.e., only a finite number of the digits are nonzero),

(b) irrational, or

(c) immediately periodic (i.e., its binary expansion has the form v0 . . . vk where each vi ∈
{0, 1}).

In particular, if the back tracing parity vector corresponds to an infinite back tracing
sequence in I1, and it is not the trivial cycle 10101010 . . ., then it is either an integer or
irrational.

Proof. Let v be a back tracing parity vector for x.
It is known that a 2-adic is a rational number if and only if its binary expansion is

eventually repeating (or immediately repeating). Thus, if the digits of v are never periodic,
then v satisfies (b).

Now, suppose v is eventually repeating. If its repeating part contains only 0’s, it satisfies
(a). So, suppose its repeating part contains at least one 1. Let v = v0v1 . . . vivi+1vi+2 . . . vi+j,
where one of vi+1 . . . vi+j is 1.

Since x is a positive integer and v is a back tracing parity vector for x, each initial segment
of v must correspond to an admissible back tracing function for x. Thus, the value

x′ = T−1
v0
◦ · · · ◦ T−1

vi
(x)

is an integer, and vi+1vi+2 . . . vi+j is a valid back tracing parity vector for x′.
Now, let

x′′ = T−1
vi+1
◦ · · · ◦ T−1

vi+j
(x′).

By a similar argument, x′′ is an integer and vi+1vi+2 . . . vi+j is a valid back tracing parity
vector for x′′. By Theorem 5.1, it follows that x′′ = x′. Thus, we have

x′ = T−1
vi+1
◦ · · · ◦ T−1

vi+j
(x′),

which implies that T j(x′) = x′. Thus x′ is a periodic point of T . But it is impossible to
back trace from x into a cycle of T unless x itself is in the cycle. It follows that v is in fact
immediately periodic, as desired.

Notice that, to prove the nontrivial cycles conjecture, it suffices to show that the only
periodic back tracing parity vector for any positive integer x is the 2-cycle 10.

The integer back tracing vectors are relatively easy to understand; they are formed by
back tracing a finite number of steps, and then multiplying by 2 indefinitely. Occasionally
one is forced into doing so, for T−1

1 can only be applied to integers congruent to 2 mod 3. If
one first back traces to a multiple of 3, then multiplying by 2 will still result in a multiple
of 3, and one can never apply T−1

1 .
The irrational back tracing parity vectors are not so easy to understand. As with most

irrational numbers, it is difficult to write one down explicitly. However, we can bound the
limiting fraction of 1’s in the back tracing parity vectors as follows.

12



Lemma 5.4. Let v be a back tracing parity vector of some positive integer x. Let k be the
number of 1’s among the first n digits of v and pn = k/n. Then

lim sup
n→∞

pn ≤ log3(2) ≈ 0.6309.

Proof. Let fn = T−1
v0
◦ T−1

v1
◦ · · · ◦ T−1

vn−1
be the back tracing function corresponding to the

first n digits of v. Then fn(x) is a positive integer for all n. Thus there is a minimum value
among the values of fn(x). Let fn0(x) be the first occurrence of this minimal value. Then
for all k ≥ 0, fn0(x) ≤ fn0+k(x).

Now, notice that T−1
1 (y) < 2

3
y for all y. Therefore, if a function f is formed by composing

i copies of T−1
1 and j copies of T−1

0 , we have f(y) ≤
(

2
3

)i
2jy.

Let t be the number of occurrences of 1 among the first n0 digits of v, and let rk be the
number of occurrences of 1 among the next k + 1 digits. Then we have

fn0(x) ≤ fn0+k(x) ≤ (2/3)r 2k+1−rfn0(x)

and so 3r ≤ 2k+1. Taking the natural log of both sides, we find that r ln(3) ≤ (k + 1) ln(2).
Thus r ≤ (k + 1) log3(2).

Finally, we have pn0+k = rk+t
n0+k

≤ (k+1) log3(2)+t
n0+k

. Since t and n0 are constant, the right
hand side of this inequality tends to log3(2) as k approaches infinity, and so the lim sup of
the values of pn is bounded above by this limit.

5.2 Greedy back tracing

While it is difficult to write down even one irrational infinite back tracing vector explicitly,
there are several ways to obtain such vectors via a recursion. In particular, we can use a
greedy algorithm that tries to keep the elements of the sequence as small as possible at each
step, with the hopes of gaining insight into the structure of G by partitioning it into a union
of the following greedy sequences.

Definition. Let x be a positive integer. The greedy back tracing sequence for x, denoted
Greedy(x), is the sequence of positive integers a0, a1, . . . defined recursively by a0 = x and
for all i > 0

ai+1 =

{
T−1

1 (ai) if T−1
1 (ai) 6≡

3
0

T−1
0 (ai) otherwise

We also write Vx to denote Greedy(x) taken mod 2, the back tracing parity vector of
Greedy(x).

It is easily verified that the recursion for Greedy(x) can also be written as a0 = x and
for all i > 0

ai+1 =

{
T−1

1 (ai) if ai ≡
9

2 or ai ≡
9

8

T−1
0 (ai) otherwise

We now show that for x relatively prime to 3, the back tracing parity vector Vx cor-
responding to Greedy(x) has infinitely many 1’s, and therefore that, for instance, V4 is
irrational.
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Lemma 5.5. Let x be a positive integer relatively prime to 3. Then Vx can have at most
three 0’s in a row at any point in the sequence.

Proof. It suffices to show if y is an odd positive integer relatively prime to 3, the greedy
algorithm applies T−1

0 at most three times before applying a T−1
1 .

Suppose y is an odd positive integer relatively prime to 3. Then it is congruent to one of
1, 2, 4, 5, 7, or 8 mod 9.

Case 1. Suppose y is congruent to 2 or 8 mod 9. Then the greedy algorithm applies T−1
1 ,

and we are done.
Case 2. Suppose y is congruent to 1 or 4 mod 9. Then the greedy algorithm determines

that the next integer in the sequence is T−1
0 (y) = 2y, which is congruent to 2 or 8 mod 9.

At this point, T−1
1 is applied, and we are done.

Case 3. Suppose y is congruent to 5 mod 9. Then the greedy algorithm applies T−1
0

to yield an integer congruent to 1 mod 9. Then, T−1
0 is applied again to obtain an integer

congruent to 2 mod 9, and T−1
1 is applied.

Case 4. Suppose y is congruent to 7 mod 9. Then the greedy algorithm applies T−1
0 to

yield an integer congruent to 5 mod 9, and by the above argument, two more T−1
0 ’s are used

before applying T−1
1 .

We immediately obtain the following fact about greedy vectors.

Corollary 5.6. Let x be a positive integer, let k be the number of 1’s among the first n digits
of v and pn = k/n. Then

lim inf
n→∞

pn ≥
1

4
.

Proof. If the nth term of Vx is 1, then each 1 in the first n terms is preceded by no more
than three 0’s, by Lemma 5.5. It follows that pn ≥ 1/4 in this case.

Otherwise, the nth term is 0, and the first n terms end in a string of k zeroes, where
1 ≤ k ≤ 3. The first n − k terms, however, have the property that each 1 is preceded
by at most three 0’s, so there are at least (n − k)/4 ≥ n−3

4
ones among the first n terms.

As n approaches infinity, the lower bound approaches n/4, and so lim infn→∞ pn ≥ 1
4
, as

desired.

This gives a lower bound on the limiting percentage of 1’s in a greedy back tracing vector.
Since we are greedily choosing to apply T−1

1 whenever possible, it would be of interest to
determine whether the greedy algorithm does maximize the percentage of 1’s in a back
tracing parity vector starting from x, and what that percentage is precisely. We leave this
as an open problem for further study.

Having studied infinite back tracing sequences in some depth, we return to the problem
of finding arithmetic progressions in the 3x+ 1 graph.

5.3 A strongly sufficient arithmetic progression

We can obtain surprising information about infinite back tracing sequences when we look
modulo certain integers. We begin by proving the following remarkable fact.
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Theorem 5.7. Let x be a positive integer relatively prime to 3. Then every infinite back
tracing sequence in Ĩx contains a positive integer congruent to 2 mod 9.

Proof. We first draw a directed graph to represent of the action of T0 and T1 on the elements
of Z/9Z relatively prime to 3, as shown in figure 5.2. Denote this directed graph by Γ̃9. Notice

that any infinite back tracing sequence in Ĩx, taken mod 9, defines a sequence of residues
traced out by an infinite path along the arrows in Γ̃9 in the reverse direction (against the
arrows). We call such a path a reverse path.

1

5

7

8

4

2

Figure 5.2: The action of T0 and T1 on the residues mod 9 relatively prime to 3.

Let v ∈ Ĩx be an arbitrary back tracing sequence avoiding multiples of 3, and let P be
the corresponding reverse path on Γ9. Assume to the contrary that v is does not contain
an integer congruent to 2 mod 9. Then the path P avoids the node labeled 2, and so it lies
entirely in the subgraph Γ′9 shown in Figure 5.3.

1

5

7

8

4

Figure 5.3: The subgraph Γ′9 of Γ̃9 formed by deleting the node labeled 2.

Now, since the path P in is infinite, it cannot contain the nodes 7, 5, or 1, since if we
travel backwards along the edges from these nodes we must end up at 1, from which we
cannot travel further. Furthermore, if P begins at the node 4, then it must travel to the
node 8, where it is locked into the red loop at 8. But by Theorem 5.3, this is impossible.
Thus P is the cyclic path 8, 8, 8, . . ..
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Since P must consist only of red arrows, the back tracing parity vector corresponding to
v is the all-1’s vector, which is a valid back tracing parity vector for the integer −1. But by
Theorem 5.1, it can therefore not be a valid back tracing parity vector for any other 3-adic
integer, and in particular, it cannot be a valid back tracing parity vector for any positive
integer. Thus, we have a contradiction, and so v must in fact contain an integer congruent
to 2 mod 9.

Thus, for the arithmetic sequence S = {2 + 9n}, not only can we back trace from any
x 6≡

3
0 to an element of S, but we cannot avoid doing so no matter how we back trace from

x. We say such sets S are strongly sufficient in the backward direction, or simply backward
sufficient.

Notice that the same argument applies to the forward direction: by looking at (ordinary,

not reverse) paths in Γ̃9, we see that any forward T -orbit must contain an integer congruent
to 2 mod 9.

Corollary 5.8. The T -orbit of every positive integer contains an integer congruent to 2 mod
9.

This essentially “proves the Collatz conjecture mod 9”, and we say that S = {2 + 9n}
is strongly sufficient in the forward direction, or simply forward sufficient. We define these
notions precisely in the next section.

6 Strong sufficiency and directed graphs

We define strong sufficiency in both the forward and backward directions, and also for the
special case of nontrivial cycles, as follows.

Definition. Let S be a set of positive integers. Then

• S is forward sufficient if every divergent T -orbit contains an element of S.

• S is cycle sufficient if every nontrivial cycle contains an element of S.

• S is backward sufficient if for every positive integer x relatively prime to 3, every
element of Ĩx having an irrational back tracing parity vector contains an element of S.

• S is strongly sufficient if it is forward sufficient, cycle sufficient, and backward sufficient.

Notation. For simplicity in what follows, we write {a1, . . . , ak mod d} to denote the set of
positive integers congruent to one of a1, a2, . . . , ak mod d. We sometimes drop the brackets
when the notation is clear. So we would say that {2 mod 9}, or 2 mod 9, is strongly sufficient.

Remark. In the case of 2 mod 9, we did not need to restrict our claim to the divergent
orbits, the nontrivial cycles, and the aperiodic infinite back tracing sequences, because the
cycle 1, 2 itself contains an element congruent to 2 mod 9. However, there are many sets
S that intersect those T -orbits and back tracing sequences that do not end in 1, 2, but do
not intersect every T -orbit simply because S does not contain 1 or 2. For this reason, we
throw away the back tracing sequences and orbits that end in 1, 2 in our definition of strong
sufficiency.
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Notice also that it suffices to prove the 3x + 1 conjecture for the elements of any single
strongly sufficient set, and that for any strongly sufficient set S, S ∪ {1} and S ∪ {2} are
sufficient sets. Moreover, not only does every positive integer x merge with an element of
S ∪ {1} (or S ∪ {2}), but it actually contains one in its T -orbit and in every element of Ĩx.
Hence the term “strong sufficiency.”

Remark. Obtaining strongly sufficient sets give us a promising way in which to approach
the nontrivial cycles conjecture. In particular, suppose we can show that a fixed, finite set
of residues a1, . . . , ak, modulo a set of arbitrarily large values of n, is strongly sufficient for
each of these moduli n. Then any nontrivial cycle, being bounded, must contain one of the
positive integers a1, . . . , ak, and so we would only need to verify that the finite list of positive
integers a1, . . . , ak have a T -orbit that contains 1.

In light of this remark, we begin a search for strongly sufficient sets. To do so, we first
define a generalization of the directed graph Γ9.

6.1 The graphs Γd and Γ̃d

We define the graph Γd to be the 3x+ 1 graph G taken modulo d, as follows.

Definition. For a positive integer k, define Γk to be the two-colored directed graph on Z/kZ
such that

• there is a black arrow from r to s if and only if there exist positive integers x and y
with x ≡

k
r and y ≡

k
s with T0(x) = y, and

• there is a red arrow from r to s if and only if there exist positive integers x and y with
x ≡

k
r and y ≡

k
s with T1(x) = y.

As with the 3x+ 1 graph G, since we are primarily interested in the portions of T -orbits
and infinite back tracing sequences whose elements are all relatively prime to 3, we also
consider the pruned graph G̃ taken modulo d.

Definition. For d ≡
3

0, the pruned graph Γ̃d is the subgraph of Γd formed by deleting the

nodes divisible by 3 (along with all of their adjacent edges). When d ≡
3

0, we define Γ̃d = Γd.

Notice that when we refer to a node z in Γ̃d or Γd we identify the congruence class z with
the integer in {0, 1, . . . , d− 1} that is in that class. For b relatively prime to 2 and 3, the
graph Γb is a natural representation of the action of T0 and T1 on Z/bZ in the group Gb.
Examples are given in Figure 6.1.

We now demonstrate several basic properties of the graphs Γd for various d.

Proposition 6.1. Let d be a positive integer.

(a) If d is even, each even node has two black arrows and no red arrows coming from it,
each odd node has two red arrows and no black arrows coming from it. If d is odd, each
node has exactly one red and black arrow coming from it.
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Figure 6.1: The digraphs Γ̃7 = Γ7 (top left), Γ̃8 = Γ8 (bottom), and Γ9 (top right), which

strictly contains Γ̃9.

(b) If d ≡
3

0, each node congruent to 2 modulo 3 has exactly one black arrow and at least

red arrow pointing to it, and each other node has one black arrow and no red arrows
pointing to it. If d 6≡

3
0, then every node has one black and one red arrow pointing to

it.

(c) If d is relatively prime to 2 and 3, then in Γd, the black arrows form disjoint cycles on
the vertices, as do the red arrows. There is one black loop at 0, and each of the other
black cycles have length dividing the order of 2 mod d. There is one red loop at d− 1,
and each of the other red cycles have length dividing the order of 3/2 mod d.

(d) If d = 3m for some m, then in Γd, the black arrows form a single cycle on the nodes
which are relatively prime to 3. For i = 1, . . . ,m − 1, there is also a cycle of black
arrows consisting of the nodes divisible by 3i but not by 3i+1, and a black loop at the
node 0.

(e) If d = 3m for some m, then in Γd, the red arrows form a rooted oriented tree with
3m− 1 as the root and all arrows oriented towards the root, plus a red loop at the root.
The length of the shortest red path from any leaf to the root is m.

Proof. Claim (c) follows from Lemma 3.3 and the fact that T0 and T1 generate a permutation
group on Z/bZ.

For claim (a), note that dividing by 2 modulo some even d can be done in two ways:
either 2r 7→ r or 2r 7→ r+ 1

2
d. Thus, if we send a congruence class x to x/2 or to (3x+ 1)/2

modulo d, in both cases we have exactly two possible results for the congruence class of T (x)
mod 2n. It follows that each even node has two red arrows and two black arrows coming
from it. If d is odd, then 2 is invertible modulo d, and so T (x) is well defined.

For claim (b), note that T−1
0 (x) = 2x is a well-defined function on Z/dZ for all d, but

T−1
1 (x) = (2x − 1)/3 is well-defined if and only if d is not divisible by 3. Thus, if d is not

divisible by 3, there is one red and one black arrow pointing to every node. If d is divisible
by 3, however, then only those x congruent to 2 modulo 3 can have a red arrow pointing to
it.
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For part (d), it is known that 2 is a primitive root mod 3m (see [5]), so the black arrows
behave as described.

We now prove part (e). To do so, we consider the purely red back tracing paths starting
at integers congruent to −1 mod 3m. Suppose x ≡

3m
−1, and let M ≥ m be the largest

positive integer such that x ≡
3M
−1. Then we can write x = 3Mk − 1 where k is relatively

prime to 3.
Back tracing along a red arrow from x, we have that T−1

1 (x) = (2x−1)/3 = 2 ·3M−1k−1,
so T−1

1 (x) is congruent to −1 mod M − 1. If M − 1 ≥ m, we have that it is also congruent
to −1 mod m. Thus, for the first M −m steps in back tracing along red arrows, we follow a
self-loop in Γ3m from 3m− 1 to itself. In particular, this loop exists in the graph, since there
are positive integers congruent to −1 mod 3M for any M > m.

Now, choose an integer x such that M = m, that is, m is the maximum positive integer
for which x ≡

3m
−1. Then by a similar argument, T−1

1 (x) ≡
3m−1

−1, and by induction we have

(T−1
1 )k(x) ≡

3m−k
−1

for all k ≥ 0. Thus (T−1
1 )m−1(x) ≡

3
−1. It follows that (T−1

1 )m(x) is congruent to either 0 or

1 mod 3, and so we cannot back trace using T−1
1 any further from here.

Note also that for each step in this process, the maximum M for which (T−1
1 )k(x) ≡

3M
−1

is monotone decreasing by 1 at each step. Thus we can partition the congruence classes mod
3m into grades based on the value of M , with the final grade consisting of those residues
congruent to 0 or 1 mod 3, and we see that each element in the back tracing sequence from
x is in a distinct grade. Moreover, each of these sequences, starting from M = m, has length
m. It follows that the red arrows do indeed form a tree oriented towards the root at 3m− 1,
with the shortest path from any leaf to the root having length m.

6.2 Vertex minors and strong sufficiency

Using the digraphs Γd for various d, we can obtain several new strongly sufficient sets. In
order to do so, we first give a graph-theoretic criterion for strong sufficiency.

Proposition 6.2. Let d ∈ N, and let a1, . . . , ak be k distinct residues mod d. Define Γ′d to be

the subgraph of Γ̃d formed by deleting the nodes labeled a1, . . . , ak and all arrows connected to
them and define Γ′′d to be the graph formed by deleting any edge from Γ′d that is not contained
in any cycle in Γ′d. If Γ′′d is a disjoint union of cycles and isolated vertices, and each of the
cycles have length less than 630,138,897, then the set

a1, . . . , ak mod d

is strongly sufficient.

Proof. Suppose Γ′′d is a disjoint union of cycles and isolated vertices, and each of the cycles
have length less than 630,138,897.

We first show that {a1, . . . , ak mod d} is forward sufficient and cycle sufficient. Assume
for contradiction that there is a positive integer x whose T -orbit, taken mod d, does not end
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in the cycle 1, 2 and also avoids the set {a1, . . . , ak mod d}. Since we are interested in the
long-term behavior of this orbit, we may assume without loss of generality that x and all
the elements of its T -orbit are relatively prime to 3, and hence trace out an infinite path P
in Γ̃d. Since the T -orbit of x avoids {a1, . . . , ak mod d}, it follows that P lies entirely in Γ′d.

Now, for any edge e in Γ′d that is not contained in any cycle, the path P contains e at
most once. Thus, some infinite tail of the path P does not contain e, and so there is a
T -orbit of some positive integer whose corresponding path does not contain e. We can thus
assume without loss of generality that P does not pass through e.

Using the same argument on each such edge e, we can assume that P lies on the subgraph
Γ′′d formed by deleting these edges. Since P is an infinite path, it must be contained in one
of the loops of Γ′′d. Thus P is periodic. Its parity vector is also periodic, determined by
the color of the edges on the loop, and so the T -orbit of x is periodic, corresponding to a
nontrivial cycle with period equal to the length of the loop. But by our assumptions, the
length of the loop is less than 630,138,897, and it is not the cycle 1, 2. But there are no such
positive integer cycles (see [11]), and so we have a contradiction.

For strong sufficiency in the backward direction, the same argument can be applied to
the graph formed by reversing the arrows in Γ̃d, and hence in Γ′d.

Remark. If we remove the bound 630,138,897 on the length of the loops, the criterion shows
that the set is forward and backward sufficient, but not necessarily cycle sufficient.

Using Proposition 6.2, we have obtained the list of strongly sufficient sets shown in Table
1.

6.3 Forward, backward, and cycle sufficiency

The sets in Table 1 are all strongly sufficient. In this section, we use more powerful tools
to obtain sets that are not necessarily strongly sufficient, but are strongly sufficient in the
forward or backward direction or cycle sufficient.

We require some known results on the limiting percentage of odd numbers in a T -orbit.
In [3], Eliahou showed that if a T -cycle of positive integers of length n contains r odd positive
integers (and n−r even positive integers), and has minimal element m and maximal element
M , then

ln(2)

ln
(
3 + 1

m

) ≤ r

n
≤ ln(2)

ln
(
3 + 1

M

) .
In [7], Lagarias showed a similar result for divergent orbits: the percentage of odd numbers

in any divergent orbit is at least ln(2)/ ln(3) ≈ .6309.
We also require a similar bound for infinite back tracing sequences. Let x be a positive

integer relatively prime to 3 and let x = x0, x1, x2, . . . be an infinite back tracing sequence
in Ĩx. Suppose further that the sequence is not periodic. Then by Proposition 5.3, its back
tracing parity vector is either irrational or has only finitely many 1’s.

In the case that the parity vector is irrational, note that every positive integer occurs
at most a finite number of times in the sequence (otherwise, the sequence must be a cycle
containing that integer). In particular, there is some N such that for all n > N , xn > x.
Now, consider the function f defined by the composition of the first n applications of T−1

0
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Strongly sufficient sets

0 mod 2 1, 4 mod 9 1, 2, 6 mod 7 3, 4, 7 mod 10 2, 7, 8 mod 11 4, 5, 12 mod 14

1 mod 2 1, 8 mod 9 0, 1, 3 mod 8 3, 6, 7 mod 10 3, 4, 5 mod 11 4, 6, 11 mod 14

1 mod 3 4, 5 mod 9 0, 1, 6 mod 8 3, 7, 8 mod 10 3, 4, 8 mod 11 4, 11, 12 mod 14

2 mod 3 4, 7 mod 9 2, 4, 7 mod 8 4, 5, 7 mod 10 3, 4, 9 mod 11 6, 7, 8 mod 14

1 mod 4 5, 8 mod 9 2, 5, 7 mod 8 5, 6, 7 mod 10 3, 4, 10 mod 11 6, 8, 9 mod 14

2 mod 4 7, 8 mod 9 0, 1, 4 mod 10 5, 7, 8 mod 10 3, 6, 10 mod 11 7, 8, 12 mod 14

2 mod 6 4, 7 mod 11 0, 1, 6 mod 10 0, 1, 5 mod 11 1, 7, 10 mod 12 8, 9, 12 mod 14

2 mod 9 5, 6 mod 11 0, 1, 8 mod 10 0, 1, 8 mod 11 1, 8, 11 mod 12 1, 5, 7 mod 15

0, 3 mod 4 6, 8 mod 11 0, 2, 4 mod 10 0, 1, 9 mod 11 2, 4, 11 mod 12 1, 5, 11 mod 15

0, 1 mod 5 6, 9 mod 11 0, 2, 6 mod 10 0, 2, 5 mod 11 4, 7, 10 mod 12 1, 5, 13 mod 15

0, 2 mod 5 1, 5 mod 12 0, 2, 7 mod 10 0, 2, 8 mod 11 1, 3, 4 mod 13 1, 5, 14 mod 15

1, 3 mod 5 2, 5 mod 12 0, 2, 8 mod 10 0, 4, 5 mod 11 1, 4, 6 mod 13 1, 7, 8 mod 15

2, 3 mod 5 2, 8 mod 12 0, 4, 7 mod 10 0, 4, 8 mod 11 1, 8, 11 mod 13 1, 8, 13 mod 15

1, 4 mod 6 2, 10 mod 12 0, 6, 7 mod 10 0, 4, 9 mod 11 2, 3, 7 mod 13 1, 8, 14 mod 15

1, 5 mod 6 4, 5 mod 12 0, 7, 8 mod 10 1, 2, 7 mod 11 2, 6, 7 mod 13 1, 10, 11 mod 15

4, 5 mod 6 5, 8 mod 12 1, 3, 4 mod 10 1, 3, 5 mod 11 3, 4, 9 mod 13 1, 10, 13 mod 15

2, 3 mod 7 7, 8 mod 12 1, 3, 6 mod 10 1, 3, 8 mod 11 3, 4, 10 mod 13 2, 5, 7 mod 15

2, 5 mod 7 8, 11 mod 15 1, 3, 8 mod 10 1, 3, 9 mod 11 3, 7, 10 mod 13 2, 5, 11 mod 15

3, 4 mod 7 1, 8 mod 18 1, 4, 5 mod 10 1, 3, 10 mod 11 3, 10, 11 mod 13 2, 5, 13 mod 15

4, 5 mod 7 2, 8 mod 18 1, 5, 6 mod 10 1, 5, 7 mod 11 4, 6, 9 mod 13 2, 5, 14 mod 15

4, 6 mod 7 2, 11 mod 18 1, 5, 8 mod 10 1, 7, 8 mod 11 4, 6, 10 mod 13 2, 7, 8 mod 15

1, 4 mod 8 7, 8 mod 18 2, 3, 4 mod 10 1, 7, 9 mod 11 4, 8, 9 mod 13 2, 7, 10 mod 15

1, 5 mod 8 8, 10 mod 18 2, 3, 6 mod 10 2, 3, 5 mod 11 6, 7, 10 mod 13 2, 8, 13 mod 15

2, 3 mod 8 8, 14 mod 18 2, 3, 7 mod 10 2, 3, 7 mod 11 6, 10, 11 mod 13 2, 8, 14 mod 15

2, 6 mod 8 10, 11 mod 18 2, 3, 8 mod 10 2, 3, 8 mod 11 7, 8, 9 mod 13 2, 10, 11 mod 15

3, 4 mod 8 5, 11 mod 21 2, 4, 5 mod 10 2, 3, 9 mod 11 8, 9, 11 mod 13 2, 10, 13 mod 15

3, 5 mod 8 0, 1, 3 mod 7 2, 5, 6 mod 10 2, 3, 10 mod 11 8, 10, 11 mod 13 2, 10, 14 mod 15

4, 6 mod 8 0, 1, 5 mod 7 2, 5, 7 mod 10 2, 5, 7 mod 11 3, 4, 10 mod 14 4, 5, 11 mod 15

5, 6 mod 8 0, 1, 6 mod 7 2, 5, 8 mod 10 2, 6, 7 mod 11 4, 5, 6 mod 14 4, 10, 11 mod 15

Table 1: Some strongly sufficient sets. Each entry reveals a new property of the divergent
T -orbits and nontrivial cycles. For instance, every divergent T -orbit, nontrivial cycle, and
aperiodic infinite back tracing sequence in G̃ contains an element congruent to either 5 or 11
mod 21. 21



or T−1
1 in this back tracing sequence. Then since T−1

1 (y) ≤ 2y/3 for any positive integer y,
we have that f(x) ≤

(
2
3

)r · 2n−rx where r is the number of 1’s among the first n digits of the
back tracing parity vector. It follows that

x < xn = f(x) =

(
2

3

)r

· 2n−rx

and therefore

1 <

(
2

3

)r

· 2n−r.

Taking the natural log of both sides and solving for r/n, we obtain

r

n
≤ ln 2

ln 3
.

In the case that the parity vector has only finitely many 1’s, there is clearly an N for
which the same inequality holds for all n > N . Thus, the percentage of odd numbers in any
aperiodic infinite back tracing sequence is at most ln(2)/ ln(3) ≈ .6309.

We summarize these results in the following proposition.

Proposition 6.3. Let ρ = ln(2)/ ln(3) ≈ .6309.

(a) The percentage of odd numbers in any divergent orbit is at least ρ.

(b) The percentage of odd numbers in any nontrivial cycle with minimal element m and

maximal element M is bounded below by ln(2)

ln(3+ 1
m)

and above by ln(2)

ln(3+ 1
M )

.

(c) The percentage of odd numbers in any aperiodic infinite back-tracing sequence is at
most ρ.

Using this as a tool, we obtain the following result.

Theorem 6.4. The arithmetic sequence {20 mod 27} is forward sufficient and cycle suffi-
cient.

Proof. Consider the graph Γ̃27, drawn in Figure 6.2.
Now, suppose for contradiction that there is a nontrivial T -cycle or divergent T -orbit of

positive integers which does not contain an integer congruent to 20 mod 27. Consider the
path P on Γ27 formed by taking this T -orbit mod 27, starting at the first element which is
not divisible by 3. Consider the subgraph Γ′27 of Γ̃27 formed by deleting the node 20 and all
its adjacent edges. Since the path P does not contain the node 20 by assumption, we see
that P lies entirely within Γ′27.

Notice that in Γ′27, the node 10 has no arrows coming into it, so it cannot occur more
than once in the path P . Similarly, the nodes 5, 16, 13, and 26 cannot occur more than once
in P . Thus, some infinite tail P ′ of the path P must lie in the subgraph Γ′′27 shown in Figure
6.3.

Note that by Proposition 6.3, any nontrivial cycle has m ≥ 3 and hence its percentage
of odd elements is at least ln(2)/ ln(3 + 1/3) ≈ 0.576, and the percentage of odd elements in
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Figure 6.2: The action of T0 and T1 on the residues mod 27 relatively prime to 3.

any divergent T -orbit is at least 0.6309. We show that the fraction of red arrows followed
by any infinite path in Γ′′27 is at most 0.5, hence obtaining a contradiction.

We first note that any consecutive path of red arrows in Γ′′27 has length at most 2.
Moreover, any path of 2 consecutive red arrows (either from 19 to 2 to 17 or from 1 to 2 to
17) must be followed by at least 2 consecutive black arrows (from 17 to 22 to 11). It follows
that the path P ′ has at most 50 percent red arrows, as desired.

The key observation in the proof above is that the graph Γ′′27 essentially has too many
black edges. We can use similar methods to obtain simple graph-theoretic criteria for strong
sufficiency in the forward and backward directions and for cycle sufficiency.

Definition. A simple cycle in a directed graph is a directed path A1, . . . , Ak of nodes for
which Ai = Aj if and only if {i, j} = {1, k}.
Proposition 6.5. Let d ∈ N, and let a1, . . . , ak be k distinct residues mod d. Let Γ′d be the

subgraph of Γ̃d formed by deleting the nodes labeled a1, . . . , ak and all arrows connected to
them, and let Γ′′d be the graph formed from Γ′d by deleting any edge which is not contained in
any cycle of Γ′d.

(a) If the fraction of red arrows in every simple cycle of Γ′′d is less than ln(2)/ ln(3), then
{a1, . . . , ak mod d} is forward sufficient.

(b) If the fraction of red arrows in every simple cycle of Γ′′d is greater than ln(2)/ ln(3),
then a1, . . . , ak mod d is backward sufficient.
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Figure 6.3: The graph Γ′′27.

(c) If the fractions of red arrows in the simple cycles of each connected component H of Γ′′d
are either all greater than ln(2)/ ln(3) or all less than ln(2)/ ln(3+1/m) where m = 260,
then a1, . . . , ak mod d is cycle sufficient.

Proof. Let ρ = ln(2)/ ln(3). First, suppose the fraction of red arrows in every simple cycle of
Γ′′d is less than ρ. We show that every infinite path in Γ′′d must also have its limiting fraction
of red arrows less than ρ, showing that a1, . . . , ak mod d is forward sufficient. Let P be an
infinite path A1, A2, . . . of nodes in Γ′′d.

Since P is infinite and Γ′′d has a finite number of nodes, some node must occur infinitely
many times in P . Call this node A. We show that the fraction of red arrows in the portion
of P between any two consecutive occurrences of A is less than ρ. Let A,B1, . . . , Bn, A be
such a sub-path of P , and call this sub-path X.

To show that the fraction of red arrows along the path X must be less than ρ, we
induct on an invariant which we call the complexity of X. Define the complexity of X
to be the number of pairs of equal nodes in the sequence A,B1, . . . , Bn, A. For instance,
the complexity of the sequence A,B,C,B,C,A is 3, and the complexity of the sequence
A,B,C,D,B,C,D,B,D,A is 8.

For the base case, suppose X has complexity 1. Then all of B1, . . . , Bn are distinct, and
so X is a simple cycle. By our hypothesis, the fraction of red arrows in X is less than ρ.

Let n ≥ 1, and assume for strong induction that if X has complexity at most n then the
fraction of red arrows in the path X is less than ρ. Suppose X has complexity n+1. Choose
a node B other than A which occurs twice in X. Then we can write X = u,B, v, B,w for
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some sequences of nodes u, v, and w.
Now, notice that the complexity of the sub-path B, v,B of X is strictly less than that of

X, since it does not contain the two copies of A on each end. Letting a be the number of
red arrows along this path and b the total number of arrows, we have that a/b < ρ by the
induction hypothesis.

Let X ′ be the cyclic path formed by deleting this cycle from X to form the sequence of
nodes u,B,w. Then the complexity of X ′ is also less than that of X, so if c is the number
of red arrows along X ′ and e is the total number of arrows, we have that c/e < ρ by the
induction hypothesis.

Finally, we have that (a + c)/(b + e) is the fraction of red arrows in the entire path X.
It is well-known that this Farey sum, also known as the mediant of the fractions a/b and
c/e, must lie between a/b and c/e. Hence it must also be less than ρ. This completes the
induction, proving the first claim.

The second claim is analogous. For the third claim, note that the 3x+ 1 conjecture has
now been verified for the positive integers less than 260, so any nontrivial cycle must have
its minimal element m and maximal element M both greater than 260. Furthermore, any
infinite periodic path lying in Γ′′d must lie entirely in one of the connected components of Γ′′d.

Assume that for all connected components H of Γ′′d, the fractions of red arrows in the
simple cycles of H are either all greater than ln(2)/ ln(3) or all less than ln(2)/ ln(3 + 1/m)
where m = 260. Suppose to the contrary that there is an infinite periodic path P in Γ′′d, and
let H be the connected component containing it. If the simple cycles in H have fractions
of red arrows less than ln(2)/ ln(3 + 1/m), then by the above argument, the fraction of red
arrows in P is also less than ln(2)/ ln(3 + 1/m), contradicting Proposition 6.3. If instead the
simple cycles in H have fractions of red arrows greater than ln(2)/ ln(3), then the fraction
of red arrows in P is also greater than ln(2)/ ln(3) > ln(2)/ ln(3 + 1/M), again contradicting
Proposition 6.3. This completes the proof.

Using Proposition 6.5, we have obtained, with the use of a computer, several examples of
forward sufficient, backward sufficient, and cycle sufficient sets that do not appear in Table
1. We list these results in Tables 2, 3, and 4.

7 Self duality and folding in Γ2n

We now use properties of the 2-adic dynamical system T : Z2 → Z2 to provide a better
understanding of the graphs Γ2n . We will use these insights to find more strongly sufficient
sets from the ones we have already found.

7.1 Self color duality

The graphs Γ2n exhibit a surprising and beautiful self-duality.

Definition. Let Γ be any directed graph having each edge colored either red or black. The
color dual of Γ is the graph formed by replacing all red edges with black edges and vice
versa.
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Forward sufficient sets

3 mod 4 11, 15 mod 16 0, 1, 6 mod 13 3, 9, 12 mod 14 7, 15, 19 mod 20

5 mod 6 4, 13 mod 18 0, 2, 3 mod 13 3, 9, 13 mod 14 9, 11, 15 mod 20

3 mod 8 11, 17 mod 18 0, 2, 6 mod 13 4, 5, 13 mod 14 11, 15, 18 mod 20

6 mod 8 13, 17 mod 18 0, 3, 9 mod 13 4, 11, 13 mod 14 11, 15, 19 mod 20

4 mod 9 5, 14 mod 21 0, 3, 10 mod 13 5, 6, 7 mod 14 10, 14, 17 mod 21

8 mod 9 5, 17 mod 24 0, 6, 9 mod 13 5, 6, 9 mod 14 13, 14, 17 mod 21

5 mod 12 11, 14 mod 24 0, 6, 10 mod 13 5, 7, 12 mod 14 14, 17, 20 mod 21

8 mod 18 11, 17 mod 24 0, 8, 9 mod 13 5, 7, 13 mod 14 3, 10, 17 mod 22

20 mod 27 11, 19 mod 24 1, 3, 7 mod 13 5, 9, 12 mod 14 3, 17, 20 mod 22

0, 3 mod 7 14, 20 mod 24 1, 3, 11 mod 13 5, 9, 13 mod 14 3, 17, 21 mod 22

0, 5 mod 7 14, 22 mod 24 1, 6, 7 mod 13 6, 7, 11 mod 14 4, 15, 19 mod 22

1, 7 mod 8 14, 23 mod 24 1, 6, 11 mod 13 6, 9, 11 mod 14 5, 16, 17 mod 22

4, 5 mod 11 17, 23 mod 24 2, 3, 4 mod 13 7, 8, 13 mod 14 8, 17, 19 mod 22

4, 8 mod 11 10, 17 mod 27 2, 3, 11 mod 13 7, 11, 12 mod 14 12, 13, 19 mod 22

2, 11 mod 12 13, 17 mod 27 2, 4, 6 mod 13 7, 11, 13 mod 14 4, 17, 22 mod 24

7, 10 mod 12 13, 22 mod 27 2, 6, 11 mod 13 8, 9, 13 mod 14 7, 17, 20 mod 24

7, 11 mod 12 17, 26 mod 27 2, 8, 11 mod 13 9, 11, 12 mod 14 7, 17, 22 mod 24

5, 11 mod 15 22, 26 mod 27 3, 7, 9 mod 13 9, 11, 13 mod 14 7, 19, 20 mod 24

3, 11 mod 16 1, 3, 9 mod 10 3, 9, 11 mod 13 1, 3, 7 mod 16 7, 19, 22 mod 24

6, 7 mod 16 1, 5, 9 mod 10 6, 7, 9 mod 13 1, 3, 9 mod 16 7, 19, 23 mod 24

6, 14 mod 16 3, 7, 9 mod 10 6, 9, 11 mod 13 1, 3, 14 mod 16 8, 17, 23 mod 27

7, 9 mod 16 5, 7, 9 mod 10 3, 6, 7 mod 14 2, 7, 12 mod 16 8, 17, 25 mod 27

7, 11 mod 16 1, 2, 5 mod 11 3, 6, 9 mod 14 2, 11, 12 mod 16 10, 11, 13 mod 27

9, 12 mod 16 1, 2, 8 mod 11 3, 7, 10 mod 14 2, 12, 14 mod 16 10, 11, 26 mod 27

9, 14 mod 16 1, 5, 9 mod 11 3, 7, 12 mod 14 5, 11, 16 mod 18

9, 15 mod 16 1, 8, 9 mod 11 3, 7, 13 mod 14 7, 9, 15 mod 20

11, 14 mod 16 0, 1, 3 mod 13 3, 9, 10 mod 14 7, 15, 18 mod 20

Table 2: Some forward sufficient sets obtained using the first criterion in Proposition 6.5.
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Backward sufficient sets

2, 4 mod 8 1, 3, 5 mod 16 2, 4, 12 mod 16 1, 4, 20 mod 24

2, 5 mod 8 1, 3, 8 mod 16 2, 5, 12 mod 16 1, 5, 13 mod 24

1, 8 mod 12 1, 3, 10 mod 16 2, 5, 13 mod 16 1, 8, 20 mod 24

2, 4 mod 18 1, 4, 12 mod 16 2, 8, 12 mod 16 2, 4, 20 mod 24

2, 5 mod 24 1, 5, 13 mod 16 2, 8, 13 mod 16 2, 8, 20 mod 24

1, 4, 10 mod 12 1, 8, 13 mod 16 2, 10, 12 mod 16

1, 3, 4 mod 16 2, 3, 10 mod 16 1, 4, 10 mod 18

Table 3: Some backward sufficient sets obtained using the second criterion in Proposition
6.5.

Cycle sufficient sets
1, 3 mod 16
2, 12 mod 16

Table 4: Some cycle sufficient sets obtained using the third criterion in Proposition 6.5.

Definition. A graph is self color dual if it is isomorphic to its color dual up to a relabeling
of the vertices.

We give a complete classification of the self color dual graphs Γk.

Theorem 7.1. The graph Γk is self color dual if and only if k = 2n for some positive integer
n.

To prove this, we require some terminology and background. Define Z2 to be the ring of
2-adic integers equipped with the usual 2-adic metric. The map T can be extended to be
defined on Z2. Define the parity vector function

Φ−1 : Z2 → Z2

to be the map sending x to the T -orbit of x taken mod 2. Bernstein [2] shows that the
inverse parity vector function Φ is well-defined, that is, the parity vector of a 2-adic uniquely
determines the 2-adic. Moreover, Lagarias [7] shows that T is conjugate to the binary shift
map

σ : Z2 → Z2,

the map sending a 2-adic binary expansion a0a1a2a3 . . . to the shifted 2-adic a1a2a3 . . ., via
the parity vector function Φ−1. That is, T = Φ ◦ σ ◦ Φ−1.

In [4], Hedlund shows that there are exactly two continuous autoconjugacies of the shift
map (conjugacies from σ to σ), namely the identity map and the “bit complement” map
V : Z2 → Z2 given by

V (a0a1a2 . . .) = b0b1b2 . . .
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where bi = 1− ai for all i. For instance, V (100100100 . . .) = 011011011 . . ..
In [8], the second author uses Hedlund’s result to demonstrate that there are exactly two

continuous autoconjugacies of T with itself. The identity map is one such map. The other,
denoted Ω : Z2 → Z2, is the map

Ω := Φ ◦ V ◦ Φ−1.

We will use Ω to demonstrate self-color-duality in Γ2n . We use the fact that V is an involution,
and hence Ω is an involution as well, that is, Ω2 = 1. In particular, we have that

T1 ◦ Ω = Ω ◦ T0

and
Ω ◦ T0 = T1 ◦ Ω

where these maps are defined.
Finally, a map f : Z2 → Z2 is called solenoidal if it induces a permutation on Z/2nZ for

all n. It is known ([4], [7], [8]) that the maps V , Φ, Φ−1, and hence Ω are all solenoidal.
Note that Ω therefore induces an involution on Z/2nZ as well.

We now have the tools to prove Theorem 7.1.

Proof. Let n ≥ 1 and let Γ∗2n denote the color dual of Γ2n . Let ΓΩ
2n denote the graph formed

from Γ2n by replacing each node label a with Ω(a) mod 2n. We show that ΓΩ
2n = Γ∗2n , from

which it follows that Γ∗2n is isomorphic to Γ2n up to a relabeling of the nodes.
Suppose that in Γ∗2n , there is a red arrow from a to b. Then in Γ2n , there is a black arrow

from a to b. It follows that there are positive integers x and y congruent to a and b mod 2n

respectively for which T0(x) = y. Therefore Ω(T0(x)) = Ω(y), and hence T1(Ω(x)) = Ω(y).
Thus, in Γ2n , there is a red arrow from Ω(a) to Ω(b). Since Ω is an involution, in ΓΩ

2n , there
is a red arrow from Ω(Ω(a)) = a to Ω(Ω(b)) = b.

Similarly, if there is a black arrow from a to b in Γ∗2n then there is a black arrow from a
to b in ΓΩ

2n .
For the reverse direction, suppose that in ΓΩ

2n there is a red arrow from a to b. Then in Γ2n ,
there is a red arrow from Ω(a) to Ω(b). Thus there are positive integers x and y congruent
to a and b mod 2n respectively for which T1(Ω(x)) = Ω(y). Thus Ω(T0(x)) = Ω(y), and since
Ω is an involution, we have T0(x) = y. It follows that there is a red arrow from a to b in Γ∗2n .

A similar argument shows that if there is a black arrow from a to b in ΓΩ
2n then there is

a black arrow from a to b in Γ∗2n . This shows that Γ2n is self color dual.
To prove that no other Γk is self color dual, let k = 2nb where b is an odd positive integer

greater than 1 and assume that Γ2nb is self color dual. Then there exists a graph isomorphism
ρ : Γ2nb → Γ2nb mapping red arrows to black ones and vice versa.

For any node z in Γ2nb define T̂0 (z) to be the set of nodes w such that there is a black
arrow from z to w and T̂1 (z) to be the set of nodes w such that there is a red arrow from z
to w. Furthermore, for any nonnegative integer k define T̂ k (z) to be the set of nodes that
can be reached starting from z by a path of length k. Clearly the graph isomorphism ρ must
preserve the number of nodes that can be reached in such a manner, i.e.∣∣∣T̂ k (z)

∣∣∣ =
∣∣∣T̂ k (ρ (z))

∣∣∣ (7.1)
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for any z and k.
Suppose a node z has a black arrow from z to itself. Then by the proof of Proposition

6.1, if n > 0 then z is even and there exists an even integer 2a congruent to z modulo 2nb
such that either T0 (2a) = a or T0 (2a+ 2nb) = a + 2n−1b is congruent to z, and thus to 2a,
modulo 2nb. Thus either a ≡

2nb
0 or a ≡

2nb
2n−1b so that in both cases 2a, and thus z, must be

congruent to 0 modulo 2nb. A similar argument shows that the only node z that has a red
arrow from z to itself is −1. Since any color reversing graph isomorphism must map these
nodes to each other, ρ (−1) = 0 and ρ (0) = −1.

We now show by finite induction that for any k ∈ {0, 1, . . . , n}, T̂ k (−1) is the set of
all nodes z such that z ≡

2n−kb
−1. For the base case, notice that T̂ 0 (z) = {z} so that in

particular T̂ 0 (−1) = {−1}, i.e. the set of nodes that are congruent to −1 modulo 2nb. If

n = 0 then we are done. If not, let k < n and assume that T̂ k (−1) =

{
z | z ≡

2n−k b
−1

}
which is a set of odd nodes. Then T̂ k+1 (−1) is the set of nodes obtained by following a red
arrow from a node z ∈ T̂ k (−1). Since z ≡

2nb
−1 + 2n−kbj for some j, and T1

(
−1 + 2n−kbj

)
=

−1 + 3 · 2n−(k+1)bj ≡
2n−(k+1)b

−1 it follows that z is in the set of all nodes that are congruent

to −1 modulo 2n−(k+1)b. Conversely if w is congruent to −1 modulo 2n−(k+1)b, then w =
−1 + 2n−(k+1)bl for some l and thus is congruent modulo 2n−kb to

−1 + 2n−(k+1)bl + 2n−kb = −1 + 3 · 2n−(k+1)bl = T1

(
−1 + 2n−kbl

)
Since −1+2n−kbl ≡

2n−kb
−1 it is congruent to an element of T̂ k (−1) and so there is a red arrow

from an element of T̂ k (−1) to w. Thus T̂ k+1 (−1) is the set of nodes that are congruent to
−1 modulo 2n−(k+1)b, which completes the induction.

A similar argument shows that T̂ k (0) is the set of all nodes z such that z ≡
2n−kb

0 for

all k ∈ {0, 1, . . . , n}. Since the graph isomorphism ρ must map the set of nodes that are
reachable by a path of length n from −1 to the set of nodes reachable by a path of length n
from ρ (−1) = 0 we have that ρ maps the set of nodes congruent to −1 modulo b to those
congruent to 0 modulo b.

Now b is odd, so 2 is invertible modulo b. Let z ≡
b
−1 and not congruent to −1 modulo

2b. Then z is even and T0 (z) ≡
b
−1

2
. Conversely, if w ≡

b
−1

2
then w = T0 (z) for some even

z ≡
b
−1. Thus every node z ≡

b
−1 that is not congruent to −1 modulo 2b has a black arrow

from z to a node w congruent to −1
2

modulo b and every node w ≡
b
−1

2
has such an arrow

pointing to it. Since we have seen that all other nodes congruent to −1 modulo b only have
arrows pointing to other such nodes, T̂ n+1 (−1) consists of all nodes congruent to either −1
or −1

2
modulo b.

Similar arguments show that T̂ n+2 (−1) consists of all nodes congruent to either −1, −1
2
,

or −1
4

modulo b and that T̂ n+2 (0) consists of all nodes congruent to either 0, 1
2
, 1

4
, or 5

4

modulo b.
If b is odd and greater than 5, directly counting these nodes shows that

∣∣∣T̂ n+2 (−1)
∣∣∣ = 3·2n

while
∣∣∣T̂ n+2 (ρ (−1))

∣∣∣ =
∣∣∣T̂ n+2 (0)

∣∣∣ = 4 ·2n contradicting 7.1. If b = 3, directly counting these
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Figure 7.1: The digraph Γ8. Self color duality is evident by reflecting about the horizontal.

nodes shows that
∣∣∣T̂ n+2 (−1)

∣∣∣ = 2 · 2n while
∣∣∣T̂ n+2 (ρ (−1))

∣∣∣ =
∣∣∣T̂ n+2 (0)

∣∣∣ = 3 · 2n again

contradicting 7.1.
Finally, suppose b = 5. Then T̂ n+1 (−1) \ T̂ n (−1) consists of the nodes congruent to −1

2

modulo 5 (i.e. the nodes congruent to 2 mod 5). All arrows from these nodes point to a
node congruent to −1

4
modulo 5 (i.e. the nodes congruent to 1 mod 5). No node congruent

to 1 mod 5 is in T̂ n (−1) as these are all congruent to −1 mod 5. Similarly, T̂ n+1 (0) \ T̂ n (0)
consists of the nodes congruent to 1

2
modulo 5 (i.e. the nodes congruent to 3 mod 5).

Since ρ is a graph isomorphism, it must map the set of nodes T̂ n (−1) to T̂ n (0) and
T̂ n+1 (−1)\ T̂ n (−1) to T̂ n+1 (0)\ T̂ n (0) and also preserve the property that no arrow coming
from a node in T̂ n+1 (0) \ T̂ n (0) can map to a node in T̂ n (0). But since T (3) = 5, the node
3 has a red arrow mapping it to the node 5, which is in T̂ n (0) as these are all the nodes
congruent to 0 mod 5. This is a contradiction, which completes the proof.

To illustrate Theorem 7.1, the graph Γ8 is shown in Figure 7.1, with each odd residue
drawn directly above its image under Ω.

7.2 Folding

An endomorphism of a map f : Z2 → Z2 is any map h : Z2 → Z2 for which f ◦ h = h ◦ f .
Note that an endomorphism is not necessarily invertible, and so while all autoconjugacies of
T are endomorphisms of T , there may be endomorphisms which are not autoconjugacies.

In [10], the fourth author classified and studied all continuous endomorphisms of T having
solenoidal parity vector functions, and in [6], the first author and Kraft studied the remaining
continuous endomorphisms of T . It is natural to ask whether these endomorphisms yield
further insights into the structure of the graphs Γ2n .

The simplest example of a continuous endomorphism of T which is not an autoconjugacy
is defined in [10] as follows. Let D : Z2 → Z2 be the discrete derivative map, given by
D(a0a1a2 . . .) = d0d1d2 . . . where di = |ai − ai+1| for all i. Then

R := Φ ◦D ◦ Φ−1

is an endomorphism of T .
Unlike Ω, the function R is not solenoidal, since D is not solenoidal. However, the value

of x mod 2n determines the value of D(x) mod 2n−1 for all n. In particular, D induces a
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Figure 7.2: At left, the graph formed by identifying the pairs of nodes in Γ8 that map to
each other under Ω. At right, the graph Γ4.

2-to-1 map Z/2nZ→ Z/2n−1Z, with D(x) = D(V (x)) for all x. Thus R also induces a 2-to-1
map Z/2nZ→ Z/2n−1Z, with R(x) = R(Ω(x)) for all x. We therefore obtain the following.

Proposition 7.2. Let n ≥ 2 be a positive integer.

(a) For any x, y ∈ Z/2nZ, there is a black edge between R(x) mod 2n−1 and R(y) mod 2n−1

in Γ2n−1 if and only if there is a path of length two in Γ2n from x to y that consists of
either two black or two red edges.

(b) For any x, y ∈ Z/2nZ, there is a red edge between R(x) mod 2n−1 and R(y) mod 2n−1

in Γ2n−1 if and only if there is a path of length two in Γ2n from x to y that consists of
one black and one red edge.

In other words, Γ2n “folds” onto Γ2n−1 by identifying Ω-pairs and using D to define the
edges. For n = 3, the graph Γ8 shown in Figure 7.1 can be folded to obtain the graph Γ4, by
identifying the Ω-pairs of nodes and drawing in new edges according Proposition 7.2. (See
Figure 7.2.)

More generally, we can fold the graphs Γ2n onto any Γ2t for t ≤ n in a similar manner
using the endomorphisms studied in [6]. For each k ≥ 2, define Mk : Z2 → Z2 to be the map
given by Mk(a0a1a2 . . .) = m0m1m2 . . . where

mi = ai + ai+1 + · · ·+ ai+k−1 mod 2

for all i. Then
HMk

:= Φ ◦Mk ◦ Φ−1

is an endomorphism of T . Note that M2 = D and HM2 = R.
The aim of this section is to prove the following result, which enables us to obtain more

strongly sufficient sets modulo powers of 2.

Theorem 7.3. Suppose a1, a2, . . . , al mod 2n satisfy the criterion for strong sufficiency of
Proposition 6.2 for d = 2n. Let q be the length of the largest cycle in Γ′′2n, and let k be any
positive integer satisfying kq ≤ 630,138,897. Then the preimage of {a1, a2, . . . , al} under HMk

modulo 2n+k−1 also satisfies the criterion from Proposition 6.2, and is therefore a strongly
sufficient set.
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Example. In Table 1, we see that 1 mod 4 satisfies the criterion for strong sufficiency of
Proposition 6.2. We see from Figure 7.2 that the inverse image of {1 mod 4} under HM2 is
the set {3, 4 mod 8}, which is therefore also strongly sufficient.

Indeed, {3, 4 mod 8} also appears in Table 1. We can therefore unfold this set another
time under HM2 , which shows that {7, 8, 9, 10 mod 16} is also strongly sufficient.

To prove Theorem 7.3, we introduce the notation established in [6], for any a ∈ Z2,
write [a] to denote the equivalence class of a under the equivalence relation a ∼ b if and
only if HMk

(a) = HMk
(b), i.e. [a] = H−1

Mk
({HMk

(a)}). Notice that HMk
restricts to a well-

defined surjective map HMk
: Z/2n+k−1Z → Z/2nZ for any n and k > 0. We also use

a to denote either the congruence class of a ∈ Z2 modulo 2n or 2n+k−1 when the power
of 2 is understood, and using this notation we have HMK

(a) = HMk
(a). Hence, ∼ also

restricts to an equivalence relation ∼ on Z/2n+k−1Z, in which residues a and b are equivalent
if and only if HMk

(a) = HMk
(b). We also denote the ∼-equivalence class of a by [a], i.e.

[a] = H
−1

Mk

({
HMk

(a)
})

. Notice that with this notation we have [a] = [a].
Throughout this section, we write x _ y to indicate that there is an arrow (either red or

black) from x to y in the digraph G, Γ2n+k−1 , or Γ2n .

Lemma 7.4. There is an arrow HMk
(x) _ HMk

(y) in Γ2n if and only if there exist a ∈ [x]
and b ∈ [y] for which a _ b in Γ2n+k−1. In this situation such arrows between the elements
of [x] and [y] form a bijection between [x] and [y].

Proof. Suppose a ∈ [x] and b ∈ [y] such that a _ b in Γ2n+k−1 . Then there exist a, b ∈ Z2 in
the congruence classes a and b modulo 2n+k−1 respectively, with T (a) = b. Then since HMk

is an endomorphism of T ,

T (HMk
(a)) = HMk

(T (a))

= HMk
(b) .

Thus HMk
(a) _ HMk

(b) in G and thus HMk
(a) _ HMk

(b) in Γ2n .
Conversely, suppose HMk

(x) _ HMk
(y) in Γ2n . Then HMk

(x) _ HMk
(y) in G. Therefore

T (HMk
(x)) = HMk

(y). Thus HMk
(T (x)) = HMk

(y) and thus [y] = [T (x)]. So taking a = x
and b = T (x) we have a _ b in G and consequently a _ b in Γ2n+k−1 and a ∈ [a] = [x] and

b ∈
[
T (x)

]
= [y].

Let s, t be nodes in Γ2n+k−1 such that s _ t. Then s = a for some a and t = T (a). Since
T restricts to a bijection between [a] and [T (a)] by the proof of Lemma 23 in [6] it induces
a bijection from [a] = [s] to [T (a)] = [t] in Γ2n+k−1 .

Lemma 7.5. Suppose x1, . . . , xj are nodes in Γ2n such that the subgraph induced by these

nodes is a cycle. Then the subgraph induced by H
−1

Mk
({x1, . . . , xj}) is a union of disjoint

cycles in Γ2n+k−1.

Proof. Consider a sequence of nodes x1, . . . , xj in Γ2n that form a cycle in Γ2n , such that
the only arrows between the xi’s are the arrows forming the cycle. Then by Lemma 7.4, the

arrows from nodes of H
−1

Mk
({xi}) and H

−1

Mk
({xi+1}) form a bijection between these sets for

any 1 ≤ i ≤ j (where we set xj+t := xt for convenience).
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Now, given a node z in one of the sets H
−1

Mk
({xi}), there is exactly one arrow z _ z1 for

some z1 ∈ H−1

Mk
({xi+1}). Moreover, since the only arrows between the xi’s are the arrows

forming the cycle, there are no arrows from z to any other node in H
−1

Mk
({x1, . . . , xj}).

Similarly, there is a unique arrow z1 _ z2 for some z2 ∈ H
−1

Mk
({xi+2}), and there are no

other arrows from z1 into H
−1

Mk
({x1, . . . , xj}).S We continue this process to define a sequence

of nodes z _ z1 _ z2 _ z3 _ · · · .
Since there are only a finite number of nodes in

⋃j
i=1H

−1

Mk
({xi}), the sequence z, z1, z2, z3 . . .

must be eventually repeating, say with minimum period m. Suppose zt 6= z is the first entry
at which the sequence repeats. Then both zt−1 _ zt and zt−1+m _ zt, and so zt−1and zt−1+m

must both lie in H
−1

Mk
({xi+t−1}). But zt−1 6= zt−1+m by minimality, contradicting Lemma 7.4.

It follows that zt = z, and so the sequence z, z1, z2, z3 . . . is a cycle.
Similarly, choosing a node z′ not in this cycle, there is a cycle z′ _ z′1 _ z′2 _ z′3 _ · · ·

that must be disjoint from the previous cycle. Continuing in this manner, we see that

H
−1

Mk
({x1, . . . , xj}) is a union of disjoint cycles in Γ2n+k−1 .

We now have the tools to prove our main result on folding.

Proof. [Proof of Theorem 7.3] Suppose a1, a2, . . . , al mod 2n satisfy the criterion for strong
sufficiency of Proposition 6.2 for d = 2n. Let Γ′′

2n+k−1 be the graph formed by deleting the

preimage of {a1, a2, . . . , al} under HMk
and all edges which are attached to those nodes,

followed by the edges which are not part of a cycle in the remaining graph. Since the edges
that remain are part of cycles, the cycles containing them map to cycles in Γ′′2n . Since the
inverse image of such a cycle is a disjoint union of cycles by Lemma 7.5, Γ′′

2n+k−1 consists of
a disjoint union of cycles.

Let q be the length of the largest cycle in Γ′′2n , and suppose kq ≤ 630,138,897. By
Corollary 22 in [6], none of the cycles in Γ′′

2n+k−1 has length greater that kq. Thus the
maximum cycle in Γ′′

2n+k−1 has length less than 630,138,897. Thus H−1
Mk

({a1, a2, . . . , al}) is a
set of nodes that satisfies the criterion of Proposition 6.2, and is therefore a strongly sufficient
set.

8 Example: 1, 3 mod 16

We conclude with an example that illustrates and links several of the main results in this
paper. In Table 4, we see that 1, 3 mod 16 and 2, 12 mod 16 are sets that satisfy the third
criterion of Proposition 6.5. Figure 8.1 shows Γ′′16 for the set 1, 3 mod 16.

Notice that the connected component containing 0 has the property that every red arrow
must be followed by at least two black arrows, and the connected component containing 15
has the opposite property: every black arrow must be followed by at least two red arrows in
any infinite path. Hence, it does indeed satisfy the third criterion of Proposition 6.5, and so
every nontrivial cycle must contain an element congruent to 1 or 3 mod 16, i.e. 1, 3 mod 16
is a cycle sufficient set.

Notice further that the components exhibit the self color duality in Γ16: the connected
component of 0 maps to the connected component of 15 under Ω, and in fact one component
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Figure 8.1: The graph Γ′′16 obtained after removing the nodes 1 and 3 from Γ16 and then
removing any nodes or edges that are not contained in a cycle.

can be reflected onto the other, with the colors of the arrows reversed, matching each node
with its Ω-dual.

Finally, notice that Ω(1) ≡
16

2 and Ω(3) ≡
16

12. By the self color duality of Γ16, it follows

that removing the nodes 2 and 12 from Γ16, and then removing the nodes and edges not
contained in any cycle, results in the same graph Γ′′16 shown in Figure 8.1. Thus 2, 12 mod 16
is a cycle sufficient set as well.
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