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Abstract. The moduli space M0,n may be embedded into the product of projective
spaces P1 ×P2 × · · · ×Pn−3, using a combination of the Kapranov map M0,n → Pn−3

and the forgetful maps πi : M0,i → M0,i−1. We give an explicit combinatorial formula
for the multidegree of this embedding in terms of certain parking functions.

This combinatorial interpretation provides a recursive formula for the generating func-
tion of the multidegree. We further show that the total degree of the embedding
(thought of as the projectivization of its cone in A2 ×A3 · · · ×An−2) is equal to
(2(n − 3) − 1)!! = (2n − 7)(2n − 9) · · · (5)(3)(1). As a consequence, we also obtain
a new combinatorial interpretation for the odd double factorial.
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1 Introduction

The moduli space of stable, n-marked, rational curves M0,n is a poster child for the field
of combinatorial algebraic geometry. It is a smooth, projective variety and a fine and
proper moduli space. It may be obtained from Pn−3 by a combinatorially prescribed
sequence of blow-ups along smooth loci. It is also a tropical compactification, meaning
that it can be realized as the closure of a very affine variety inside a toric variety. The
stratification induced by the boundary of the toric variety coincides with the natural
stratification by homeomorphism classes of the objects parameterized; strata are indexed
by stable trees with n-marked leaves, and the graph algebra of stable trees completely
controls the intersection theory of M0,n, meaning that one may combinatorially define a
multiplication on stable trees in such a way that the natural assignment of a tree with
the (closure of the) stratum it indexes defines a surjective ring homomorphism to the
Chow ring of M0,n ([4, 5, 6]).
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This work provides another instance of the rich interaction between algebraic geome-
try and combinatorics brought about by M0,n. Our central focus is the closed embedding

φ : M0,n → P1 ×P2 × · · · ×Pn−3

arising from the recent work of Keel and Tevelev [7]. We study the degrees of the em-
bedding from both a geometric and combinatorial perspective. We now state succinctly
our two main results and then discuss them.

Theorem 1. Let n ≥ 3 and k = {k1, . . . , kn−3} be an ordered list of non-negative integers with
∑ ki = n− 3. Then:

degk(φ(M0,n)) =
∫

M0,n

n−3

∏
i=1

ω
ki
3+i =

〈
n− 3

rev(k)

〉
= |CPF(n− 3, rev(k))|. (1.1)

Theorem 2. Denote by C the affine cone over φ(M0,n) in A2 ×A3 × · · · ×An−2. Then

deg(P(C)) = ∑
k

degk(φ(M0,n)) = (2(n− 3)− 1)!! (1.2)

where (2n− 7)!! = (2n− 7)(2n− 9) · · · (5)(3)(1) is the odd double factorial.

In Theorem 1, the first two quantities are geometric, and the latter two are purely
combinatorial.

The multidegree degk(φ(M0,n)) of this embedding with respect to the tuple k =
(k1, . . . , kn−3) ∈Nn−3 is given by intersecting the image of the embedding φ(M0,n) with
(pullbacks of) ki hyperplane classes in each factor Pi. We define certain omega classes
ωi+3 corresponding to these hyperplane pullbacks.

By relating these omega classes to the well-known ψ classes on M0,n, we obtain a
recursion for the multidegree degk(φ(M0,n)) that resembles the recursion satisfied by
the multinomial coefficient (n

k). We therefore define the symbol
〈 n

k
〉

to satisfy the corre-
sponding asymmetric recursion (see Definition 10 below), and we show that

degk(φ(M0,n)) =

〈
n− 3

rev(k)

〉
where rev(k) = (kn−3, kn−2, . . . , k1) is the tuple formed by reversing k.

Finally, we show that these asymmetric analogs
〈 n

k
〉

of multinomial coefficients ex-
hibit a remarkable combinatorial interpretation in terms of parking functions. Parking
functions were first defined by Konheim and Weiss [8] as solutions to an algorithmic
problem involving parking cars, and may be defined as functions f : {1, 2, . . . , n} →
{1, 2, . . . , n} such that | f−1({1, 2, . . . , i})| ≥ i for all i. Parking functions have since be-
come a central tool in combinatorics, perhaps most notably in the study of diagonal
harmonics and q, t-analogs of Catalan numbers (see [2, 3]).



M0,n and Parking Functions 3

2
3
5

1
6

4

Figure 1: An example of a parking function of size 6.

We introduce here the notion of column restriction on parking functions (see Section
4), and define CPF(n, k) to be the set of all column-restricted parking functions f on
{1, 2, . . . , n} such that ki = | f−1(i)| for all i. The resulting combinatorial interpretation
in Theorem 1 is the primary tool we use to prove Theorem 2. In particular, we show that
the total number of column-restricted parking functions of size n is (2n− 1)!!, giving a
new combinatorial interpretation of the double factorial.

We structure this extended abstract as follows. In Section 2 we establish some nec-
essary geometric and combinatorial background and notation. In Section 3 we give
the recursion on the multidegree of φ(M0,n). In Section 4 we define column-restricted
parking functions, provide the recursive formula for the generating function of the mul-
tidegree (see Proposition 12), and give an outline of the proofs of Theorems 1 and 2. Full
proofs and details will be given in [1].

2 Background

2.1 Parking functions and compositions

A (weak) composition of n is a tuple k = (k1, . . . , k j) of nonnegative integers such that

∑
j
i=1 ki = n. We say that j is the length of the composition, and we write Comp(n, j)

to denote the set of all weak compositions of n having length j. We say a composition
k ∈ Comp(n, n) is Catalan if for all j < n, we have k1 + k2 + · · ·+ k j ≥ j.

A Dyck path of height n is a path from (0, 0) to (n, n), using only steps (0, 1) or
(1, 0), which always stays weakly above the diagonal line y = x. A parking function is a
Dyck path along with a labeling of all unit squares having an up-step to its left with the
numbers 1, 2, . . . , n in some order, such that in each column the numbers are increasing
from bottom to top. An example of a parking function for n = 6 is shown on Figure 1.

A parking function may be specified by the sets of entries in each column from left to
right. The columns above are ({2, 3, 5}, {}, {1, 6}, {}, {}, {4}), giving rise to the associ-
ated sequence of column heights (3, 0, 2, 0, 0, 1). Given the columns, we can reconstruct
the parking function by placing the column entries in increasing order in each column,
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increasing the height by one for each successive entry from left to right. Notice that
the resulting path formed by the columns is a Dyck path if and only if the sequence of
column heights is Catalan.

2.2 The moduli space M0,n

For n ≥ 3, the moduli space M0,n parameterizes ordered n-tuples of distinct points on
P1. We say that two n-tuples (p1, . . . , pn) and (q1, . . . , qn) are equivalent if there exists
a projective transformation g ∈ PGL(2, C) such that (q1, . . . , qn) = (g(p1), . . . , g(pn)).
Since a projective transformation can map three fixed points on P1 to any other three
points and is uniquely determined by their image, we have dim M0,n = n− 3.

The space M0,n is not compact, hence we consider its Deligne-Mumford compactifi-
cation M0,n ([4, 5, 6]), parametrizing stable n-pointed rational curves.

Definition 3. A stable rational n-pointed curve is a tuple (C, p1, . . . , pn), where C is a
connected curve of arithmetic genus 0 with at most simple nodal singularities, p1, . . . , pn
are distinct nonsingular points on C, and each irreducible component of C has at least
three special points (either marked points or nodes).

The divisorial components of the boundary of M0,n correspond to partitions of the
set {1, . . . , n} into two subsets I and Ic, each of cardinality at least 2. These correspond
to the stable curves consisting of two irreducible components C1, C2 intersecting at a
node, with the marked point pi on the component C1 if and only if i ∈ I. We denote the
corresponding irreducible boundary divisor of M0,n by δI (or equivalently by δIc).

2.3 Chow ring and integral notation

For a smooth algebraic variety Y, its Chow ring A∗(Y) is an algebraic version of De
Rham cohomology. The elements of the i-th graded piece Ai(Y) are integral linear com-
binations of irreducible subvarieties of Y of codimension i modulo rational equivalence.
For two classes Z1 ∈ Ai, Z2 ∈ Aj, their product in Z1 · Z2 ∈ Ai+j(Y) is the class of the
intersection of transversely intersecting representatives of Z1, Z2.

For the product of projective spaces Pb = Pb1 × . . . × Pbn let pi : Pb → Pbi be the
natural projection on the i-th factor. We define special divisor classes H1, . . . , Hn in the
Chow ring of Pb to be the pullbacks of hyperplanes in Pb1 , . . . , Pbn respectively:

Hi := p∗i H
Pbi .

We use integral notation for the degree of a 0-dimensional cycle (by analogy with De
Rham cohomology). For example, if X ⊆ Pb, we write

deg0

(
X ·

n

∏
i=1

Hki
i

)
=
∫

Pb
X ·

n

∏
i=1

Hki
i .
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2.4 Multidegree

Let X ⊆ Pb be a subvariety of the product of projective spaces. Then for any integer
vector k = (k1, . . . , kn) ∈ Zn

≥0 one can define the degree of X of index k to be the degree
of the zero dimensional cycle

degk(X) :=
∫

Pb
X ·

n

∏
i=1

Hki
i ,

where if the dimension of X ·∏n
i=1 Hki

i is nonzero, then by definition degk(X) = 0. Note
that the degree of index k is zero unless ∑ ki = dim(X).

By Poincaré duality, the collection of numbers degk for all k determines the class of
X in the Chow ring A∗(Pb):

[X] = ∑
k, |k|=dim(X)

degk(X) · Hb1−k1
1 . . . Hbn−kn

n ∈ A|b|−dim(X)(Pb). (2.1)

For X ⊆ Pb let Con(X) ⊆ Ab1+1 × . . . ×Abn+1 be the affine cone over X. The
following theorem of Van Der Waerden [9] relates multidegrees of X with the degree of
the projectivization P(Con(X)).

Theorem 4. The degree deg(P(Con(X))) is equal to the sum of all multidegrees of X:

deg(P(Con(X))) = ∑
k

degk(X).

For the closed embedding of projective variety φ : X → Pb the degree of index k of
the image φ(X) is equal to: ∫

X

n

∏
i=1

(φ∗Hki
i ).

3 Embeddings of M0,n in products of projective spaces

In this section we describe the embedding φ : M0,n ↪→ P1 × · · · ×Pn−3 obtained in [7].
The embedding φ depends on two well-studied maps from M0,n, namely the forgetful
map πn : M0,n → M0,n−1 and Kapranov’s map ψn : M0,n → Pn−3.

The forgetful map πn : M0,n → M0,n−1 is the morphism given by forgetting the last
point of [C, p1, . . . pn] and stabilizing the curve, i.e. contracting the components which
have less than three special points and remembering the points of intersection.

To describe ψn, let Li be the line bundle on M0,n whose fiber over a point [C, p1, . . . , pn]
is the cotangent space of P1 at pi. Define ψi = c1(Li) to be the first Chern class of Li. The
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Kapranov map ψn is the rational map given by the linear system |ψn|. This map was first
described in detail by Kapranov [5], who proved in particular that ψn : M0,n → Pn−3.

The following theorem is the key to defining M0,n as a subvariety of a product of
projective spaces.

Theorem 5. [7, Cor 2.7] The map Φn = (πn, ψn) : M0,n → M0,n−1 × Pn−3 is a closed
embedding.

Iterated applications of Theorem 5 yield a closed embedding

φ : M0,n ↪→ P1 ×P2 × . . .×Pn−3. (3.1)

Let H1, . . . , Hn−3 as before be the pullbacks of hyperplane classes in P1, . . . , Pn−3

respectively. Let fi = πi+1 ◦ · · · ◦ πn : M0,n → M0,i be the forgetful map that forgets
the points labelled by i + 1, . . . , n. The class φ∗Hi on M0,n is equal to f ∗i+3ψi+3, where
ψi+3 is understood as a psi class on M0,i+3. Therefore, the degree of M0,n of index
k = (k1, . . . , kn−3) is nonzero only if ∑ bi = n− 3 and is equal to:

degk(φ(M0,n)) =
∫

M0,n

n−3

∏
i=1

f ∗i+3(ψ
ki
i+3),

where ψi is the psi class on the M0,i. Motivated by this formula we introduce the follow-
ing definition.

Definition 6. We define an omega class ωi := f ∗i (ψi) on M0,n to be the pullback of the
corresponding psi class from M0,i.

In this notation, the degree of M0,n of index k = (k1, . . . , kn−3) is equal to:∫
M0,n

n−3

∏
i=1

ω
ki
i+3.

3.1 Intersection theory of ω classes on M0,n

Let St : Symd → Symd−1 be a linear transformation of the space of polynomials defined
on monomials as

St
(
∏ xki

i

)
= ∑

i,ki 6=0
xki−1

i ∏
j 6=i

x
kj
j ,

and extended by linearity. The notation St is due to the String equation which provides
the recursive formula for the intersection numbers of ψ classes. If ∏ ψ

ki
i is a monomial

in ψ classes with ka = 0 for some 1 ≤ a ≤ n, then

(πa)∗∏ ψ
ki
i = St

(
∏ ψ

ki
i

)
. (3.2)
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Note that if ∑ ki = n− 3, we have∫
M0,n

∏ ψ
ki
i = Stn−3

(
∏ xki

i

)
=

(
n− 3

k1, . . . , kn

)
.

The following lemma is an analogue of the string equation for ω classes.

Lemma 7. Let ∏a−1
i=1 ω

ki
i ∏n

j=a+1 ω
kj
j be a monomial in omega classes such that k j > 0 for all

a < j ≤ n. Then the following relation holds:

(πa)∗

(
a−1

∏
i=1

ω
ki
i

n

∏
j=a+1

ω
kj
j

)
= (πa)∗

(
a−1

∏
i=1

ω
ki
i

n

∏
j=a+1

ψ
kj
j

)
=

a−1

∏
i=1

ω
ki
i · St

(
n

∏
j=a+1

ψ
kj
j

)
. (3.3)

Proof. The string recursion for psi classes follows from the relation:

π∗k (ψi) = ψi − δi,k+1, (3.4)

where πk : M0,k+1 → M0,k is the forgetful map. Equation (3.3) follows from 3.4 and a
careful use of the projection formula.

The following proposition can be derived from Lemma 7.

Proposition 8. The multidegree degk(M0,n+3), with respect to the embedding φ, satisfies the
recursion:

degk(M0,n+3) =
n

∑
j=i+1

degk′j
(M0,n+2) (3.5)

for all k = (k1, . . . , kn) with ∑t kt = n, where i is the index of the rightmost zero in k and
k′j is formed by (1) decreasing k j by 1, and then (2) deleting the rightmost zero in the resulting
sequence (which may be either in position i or j).

Notice also that the embedding φ : M0,4 → P1 is simply the identity map since
M0,4

∼= P1. Thus deg(1)(M0,4) = 1.

4 Parking functions and the double factorial

We now establish the connections with parking functions and outline the proofs of the
main two theorems.
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4.1 Asymmetric multinomials

Proposition 8 naturally gives rise to the following combinatorial definitions.

Definition 9. Let k ∈ Comp(n, n), let ki be the leftmost 0 in k, and let j < i be a positive
integer. Then we define k̃j ∈ Comp(n − 1, n − 1) by decreasing k j by 1 in k and then
removing the leftmost 0 from the resulting tuple (which is either in position j or i).

For example, if k = (3, 1, 2, 0, 0, 1, 0), then k̃1 = (2, 1, 2, 0, 1, 0), k̃2 = (3, 2, 0, 0, 1, 0),
and k̃3 = (3, 1, 1, 0, 1, 0). Since i = 4 in this example, k̃4 is not defined. Note that this
construction is simply the reverse of the construction k′j defined in Proposition 8.

Definition 10. The asymmetric multinomial coefficients
〈 n

k
〉

(where k ∈ Comp(n, n))

are defined by the recursion
〈

1
1

〉
= 1 and

〈n
k

〉
=

ik

∑
j=1

〈
n− 1

k̃j

〉

where ik is the index of the leftmost 0 in a composition k.

The equations (3.5) and Definition 10 together show that degk(M0,n+3) =
〈

n
rev(k)

〉
.

Catalan sequences naturally arise from this recursion, as shown in the following lemma,
whose proof we omit.

Lemma 11. If k ∈ Comp(n, n) is Catalan, then k̃j is also Catalan for any j ≤ ik. Conversely,
if k is not Catalan then k̃j is not Catalan for any j ≤ ik.

As a consequence, we have that
〈 n

k
〉

is nonzero if and only if k is Catalan.

We now obtain a recursion for the generating function

Fn(x1, . . . , xn) := ∑
k∈Comp(n,n)

〈n
k

〉
xk1

1 · · · x
kn
n ,

which is the natural dual of the Poincaré polynomial of equation (2.1).
Define Comp(n, n, i) to be the set of all k ∈ Comp(n, n) for which i is the index

of the leftmost zero in k. If k j 6= 0 for all j we say i = n + 1 and write the set as
Comp(n, n, n + 1). We define the auxiliary generating functions

Fn,i(x1, . . . , xn) = ∑
k∈Comp(n,n,i)

〈n
k

〉
xk1

1 · · · x
kn
n .

We simply write X for the set of variables x1, . . . , xn, and the notation F(X\xi) means
that we are plugging in x1, . . . , xi−1, xi+1, . . . , xn into the function F.
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Proposition 12. We have

Fn(X) =
n+1

∑
i=2

Fn,i(X)

where the functions Fn,i(X) satisfy the recursion

Fn,i(X) =

(
i−1

∑
j=1

xjFn−1,i−1(X\xj)

)
+ (x1 + · · ·+ xi−1)

n

∑
j=i

Fn−1,j(X\xi)

with initial condition F1,2(x1) = x1.

Proof. This is a straightforward consequence of Definition 10.

4.2 Column-restricted parking functions

We now obtain a combinatorial interpretation of
〈 n

k
〉
.

Definition 13. Let P be a parking function, and let a be a label in P. Define the domi-
nance index of a, written dP(a), to be the number of columns left of a that contain no
label greater than a.

Definition 14. A parking function P is column-restricted if for every label a,

dP(a) < a.

We write CPF(n, k) to denote the set of all column-restricted parking functions having
columns of lengths k1, k2, . . . , kn from left to right, and CPF(n) =

⋃
k CPF(n, k).

For example, the parking function in Figure 1 is not column-restricted because the 1
has an empty column to its left. Those in Figure 2 are column-restricted.

We now give a brief sketch of the proof of Theorem 1, which can be stated as:

|CPF(n, k)| =
〈n

k

〉
.

Proof of Theorem 1. (Sketch.) We show that |CPF(n, k)| satisfies the recursion of Defini-
tion 10. It is easy to check that |CPF(1, (1))| = 1.

For the recursion, let P ∈ CPF(n, k) and let i be the index of the leftmost 0 in k. Note
that the entry 1 must be in some column j ≤ i− 1 by column-restrictedness. Then if we
first remove the row containing the 1, then remove the leftmost empty column (which
may be either column j or column i), and finally decrease all remaining labels by 1, we
obtain a new parking function P′. One can check that P′ ∈ CPF(n, k̃j), and that we can
uniquely reconstruct P given P′ and j. (See Figure 2.)
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Figure 2: An illustration of the map P 7→ P′ described in the proof of Theorem 1.

4.3 Counting by (2n− 1)!!

We now give a brief outline of the proof of Theorem 2, namely, that

∑
k∈Comp(n,n)

〈n
k

〉
= (2n− 1)!!

The left hand side simply counts |CPF(n)|. Since |CPF(1)| = 1, it suffices to show that

|CPF(n)| = (2n− 1)|CPF(n− 1)|

for all n ≥ 2. To do so, note that any Dyck path from (0, 0) to (n − 1, n − 1) passes
through exactly 2n− 1 lattice points. We show that we can “insert” a label n at each of
these points to construct a column-restricted parking function of height n from one of
height n− 1.

Definition 15. A pointed column-restricted parking function is an element P ∈ CPF(n)
along with a choice p of one of the 2n − 1 lattice points on its Dyck path. We write
CPF•(n) for the set of all pointed column-restricted parking functions (P, p) of size n.

With this in mind, we define the following insertion map.

Definition 16. For an element (P, p) ∈ CPF•(n − 1), we define ι(P, p) as follows. Let
Pp→ be the tail of P (both the path and labels) after the point p.

1. Shift Pp→ one step up and one step right. Connect the newly separated paths by
an up step followed by a right step, and label the new up step by n.

2. Let C1, . . . , Ct be the columns that contain some entry whose dominance index
changed upon performing step 1 above. Move the column C1 into the rightmost
empty column to its left, then move C2 into the rightmost empty column to its left
(which may be the column that C1 occupied before), and so on.
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Figure 3: An example of the map ι, where the dotted corner above the 5 in the left
hand diagram indicates the point p at which we insert n = 13.

The result is ι(P, p). (See Figure 3)

The following lemma, whose proof we omit, is often useful in computing ι.

Lemma 17. In step 2 of computing ι(P, p), we have t > 0 (i.e., step 2 is nontrivial) if and only
if p is an upper left corner of the Dyck path.

Moreover, in this case, let r be the label just below the point p. Then the only labels whose
dominance index changes in step 1 of ι are those labels a < r to the right of r, and their dominance
index increases by exactly 1.

Lemma 17 gives rise to the following natural definitions.

Definition 18. We write GPF•(n − 1) (resp. BPF•(n − 1)) to denote the pairs (P, p) ∈
CPF•(n− 1) in which p is not an upper left corner (resp. is an upper-left corner). We
refer to these types as good and bad pointed CPF’s respectively.

We can also tell from the output of ι(P, p) whether (P, p) is good or bad.

Lemma 19. We have (P, p) ∈ GPF•(n − 1) if and only if, in ι(P, p), either (a) there is no
label below n in its column, or (b) there is a label r below n and the square up-and-right from n
contains a label a > r.

Definition 20. Say that a parking function Q in CPF(n) is good if either (a) there is no
label below n in its column, or (b) there is a label r below n and the square up-and-right
from n contains an entry c > r. If Q is not good, we call it bad, and this occurs if and
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only if the square below n contains a label r and the square up-and-right from n either
is empty or contains a label c with c < r.

We write GPF(n) and BPF(n) for the sets of good and bad column-restricted parking
functions of height n, respectively.

Proposition 21. The map ι : CPF•(n− 1)→ CPF(n) is a well-defined bijection, and it restricts
to bijections

ι : GPF•(n− 1)→ GPF(n) and ι : BPF•(n− 1)→ BPF(n).

The proof of this proposition is rather technical; full details can be found in [1].
Theorem 2 follows.
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