
On the Erdös-Straus conjecture:
Properties of solutions to its underlying

diophantine equation

M. Monks and A. Velingker

September 23, 2008

Abstract

The Erdös-Straus Conjecture states that the equation 4
p = 1

x + 1
y + 1

z can be solved
in integers x, y, z for every integer p > 1. In this paper, we investigate properties
of solutions to this Diophantine equation in the special case in which p is a prime
number. We prove various divisibility and modular relations about the solutions as
well as lower and upper bounds on x, y, and z. In addition, the paper sheds light on
several approaches which could potentially be used to prove the conjecture. Among
these new approaches are reducing the problem to a number theoretic property of
primes and studying the values of p that have a solution with chosen values for y and
z.

1 Introduction

Number theory is a vast and growing branch of mathematics concerned with the properties
of integers. It has numerous applications in a variety of fields such as computer science,
cryptography, communications, information theory, physics, and numerical mathematics.
Number theory has been especially useful in developing algorithms, such as RSA, a public-
key cryptography algorithm which relies on the fact that very large numbers are difficult to
factor.

One important topic in number theory is the study of Diophantine equations, equations
in which only integer solutions are permitted. The type of Diophantine equation discussed
in this paper concerns Egyptian fractions, which deal with the representation of rational
numbers as the sum of unit fractions [2]:

a

b
=

1

x1

+
1

x2

+ · · ·+ 1

xh
. (1.1)

An unsolved conjecture due to Paul Erdös and Ernst G. Straus states that the equation

4

p
=

1

x
+

1

y
+

1

z
(1.2)
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can be solved in positive integers x, y, and z for any integer p > 1. Much work has been
done on the problem. Mordell [3] has proven that the conjecture is true for all p except
possibly cases in which p is congruent to 12, 112, 132, 172, 192, or 232 mod 840. Schinzel [4]
has demonstrated that if m and n are relatively prime integers and one can express

4

mt+ n
=

1

x(t)
+

1

y(t)
+

1

z(t)

with x(t), y(t), and z(t) being integer polynomials in t with positive leading coefficients, then
n cannot be a quadratic residue mod m. In addition, the conjecture has been verified to be
true for all p < 108 by Franceschine [1] and for all p < 1014 by Swett [5]. No counterexamples
have been found to the conjecture, and Vaughan [6] has established that if Ea(N) is the
number of positive integers b < N for which equation (1.1) is insoluble with h = 3, then

Ea(N)� N exp

{
−(lnN)2/3

C(a)

}
where C(a) is a positive integer dependent only on a.

If q is a prime dividing p then (p
q
x, p

q
y, p

q
z) is a solution to (1.2) if and only if (x, y, z)

is a solution to (1.2) with p = q. Thus, the conjecture is true for all p > 1 if and only if
it is true for all prime p. Consequently, in this paper we examine the solutions to equation
(1.2) for the special case in which p is prime. We prove several properties, including lower
and upper bounds as well as divisibility relations. We also restate the conjecture in several
equivalent forms, revealing new possible approaches to a solution.

2 Main Results

In seeking solutions to equation (1.2) it would be helpful to narrow down our search by deter-
mining properties that any solution must have. Our first theorem reveals several interesting
properties of these solutions.

Define νa(b) = max {c : ac | b} . We refer to νa (b) as the exponent of a in b.

Theorem 2.1 Let a ∈ Z+ with a ≥ 4, let p > a be a prime, and let (x, y, z) be a solution
in positive integers to a

p
= 1

x
+ 1

y
+ 1

z
with x ≤ y ≤ z.

(a) Let q 6= p be a prime. At least two of νq(x), νq(y),and νq(z) equal max {νq(x), νq(y), νq(z)} ,
i.e. the highest power of q dividing x, y, or z occurs at least twice among the prime factor-
izations of x, y, and z.
(b) Let q be a positive integer such that gcd(q, p) = 1. If q divides one of x, y, or z, then q
divides the product of the remaining two.
(c) p - x and p | z and x < p.
In parts (d) through (k) we assume a = 4.
(d) p2 - y and p2 - z.
(e) Let k = z

p
. Then p - y ⇔ 4k ≡ 1 (mod p).

(f) gcd(y, z) 6= 1.
(g) If z = p · lcm(x, y) then p2 + m has a divisor congruent to −p (mod m), where m =
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4 · gcd(x, y).

(h) x = y if and only if (x, y, z) =
(
p+1
2
, p+1

2
, p(p+1)

4

)
and x is even. Furthermore, such a

solution exists if and only if p ≡ 3 (mod 4).
(i)
⌈
p
4

⌉
≤ x ≤ p+1

2
≤ y.

(j) If p | y then x ≤
⌊

pc
3c−1

⌋
where c =

⌈√⌈
p
4

⌉ ⌉
.

(k) p
⌊

5+
√

4p−3
4

⌋
≤ z ≤ p2(p+1)d p

4e
4d p

4e−p
.

We postpone all proofs until Section 3.
The first four parts of Theorem 2.1 pertain to the generalized version of the Erdös-

Straus Conjecture. The conjecture itself is the case a = 4, and we restrict to this case in the
remaining parts.

Part (a) of Theorem 2.1 reveals an interesting property of the prime factorizations of x,
y, and z. The symmetry implied by this result is seen in the example

4

193
=

1

2 · 52
+

1

22 · 3 · 5 · 23
+

1

22 · 3 · 52 · 23 · 193
.

Notice that some primes may occur in all three of x, y, and z (2 and 5 in this case), but
the highest power of every prime other than p occurs more than once.

Part (b), which follows from (a), also relates the divisors of x, y, and z in a very
symmetric way. In particular, x | yz since x and p are relatively prime by part (c).
Also, there is exactly one p in the prime factorization of z and at most one p in the prime
factorization of y by parts (c) and (d). Thus z | pxy and y | xz. In this way the first four
assertions of Theorem 2.1 give an insight into the prime factorizations of x, y, and z in any
solution.

All solutions to equation (1.2) for a given p have the property that p - x and p | z.
However, verification by computer shows that for each of the first 1000 primes p greater
than 4 equation (1.2) has at least one solution with y divisible by p and at least one with
p - y. Therefore all solutions naturally fall into two categories: p - y and p | y.

When p - y, the integer k = z
p

shares a common prime factor with y by part (f) of Theorem

2.1. The solutions in this category are characterized by the property that 4k ≡ 1 (mod p)
by part (e). Notice that the hypothesis of part (g), z = p · lcm(x, y), implies that p - y
because p2 does not divide z, so part (g) reveals an additional modular property of this
category of solutions. Thus parts (e), (f), and (g) narrow our search for solutions of this
type.

It is useful to have bounds on the sizes of x, y, and z in the solutions to equation (1.2).
Computer algorithms for finding solutions to the equation are faster and more efficient if
the ranges over which they check for solutions are smaller. Such bounds are presented in
parts (i) and (k) of Theorem 2.1. Part (h) tells us that the upper bound on x (and lower
bound on y) of p+1

2
is the best possible bound for infinitely many primes p, for whenever

p ≡ 3 (mod 4) equation (1.2) has solutions with x and y equal to p+1
2

. For solutions for
which p divides y, the bound in part (j) further improves upon this upper bound on x.

The properties of solutions described above are of value in attempting to find a general
form for a solution in terms of p. In addition, restatements of the conjecture can provide
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alternative methods of proof. Our remaining results reformulate the conjecture in several
ways and reveal new approaches to solving it.

The following theorem is apparently well-known [5], but was derived independently as
part of this research project and we include our proof in Section 3.

Theorem 2.2 Let a, b ∈ Z+. Then a
b

= 1
x

+ 1
y

for some x, y ∈ Z+ if and only if there exist

two divisors u and v of b such that a | u+ v.

Rearranging equation (1.1) with a = 4, b = p, and h = 3 as

4x1 − p
px1

=
1

x2

+
1

x3

(2.1)

we see that to prove the conjecture we need only show that for every prime p, there is an
integer x1 such that px1 has two divisors whose sum is a multiple of 4x1− p. Furthermore,
if p | x1, letting x1 = px′1 we obtain

4x′1 − 1

px′1
=

1

x2

+
1

x3

(2.2)

and conclude that we need only show that for every prime p, there is an integer x′1 such
that px′1 has two divisors whose sum is a multiple of 4x′1 − 1.

Note that by part (c) of Theorem 2.1, one of x1, x2, and x3 is divisible by p and one is
not. Therefore, if there exists a solution to equation (2.1) for a given p then there exists one
to equation (2.2) and vice versa, so the two sufficient conditions shown above are equivalent.
Combining these cases, the following corollary results:

Corollary 2.3 The Erdös-Straus conjecture is true if and only if for every prime p, ∃n ∈ Z+

such that pn has two divisors that sum to a multiple of either 4n− p or 4n− 1.

Thus we have restated a conjecture about solutions to a Diophantine equation as a
number theoretic property of primes.

Finally, we approach the Erdös-Straus conjecture in another way: we ask which primes
p, if any, have solutions with a specific y and z value, in effect working backwards. In
particular, we are interested in the case when y is divisible by p. For the remainder of this
section, we let y = pj and z = pk.

Define the integer valued function α by α(r, s) = 4rs−r−s
d·gcd( 4rs−r−s

d
,d)

where d = gcd(r, s).

Theorem 2.4 For every j, k ∈ Z+ there is at most one prime p such that 4
p

= 1
x

+ 1
pj

+ 1
pk

for some positive integer x. Such a prime p exists if and only if α(j, k) is prime, and in
this case p = α(j, k).

Thus if α(j, k) is prime, then there is a solution to equation (1.2) with p = α(j, k),
y = pj, and z = pk. From this we obtain the following corollary:

Corollary 2.5 If for all prime p there exist positive integers j and k such that α(j, k) = p
then the Erdös-Straus conjecture is true.
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k
1 2 3 4 5 6 7 8 9 10

1 2 5 8 11 14 17 20 23 26 29
2 5 3 19 13 33 10 47 27 61 17
3 8 19 10 41 52 7 74 85 32 107
4 11 13 41 7 71 43 101 29 131 73

j 5 14 33 52 71 18 109 128 147 166 37
6 17 10 7 43 109 11 155 89 67 56
7 20 47 74 101 128 155 26 209 236 263
8 23 27 85 29 147 89 209 15 271 151
9 26 61 32 131 166 67 236 271 34 341
10 29 17 107 73 37 56 263 151 341 19

Table 1: α (j, k)

Table 1 shows the values for α(j, k) as j and k range from 1 to 10. Primes are in boldface
print. Corollary 2.5 shows that if every prime occurs somewhere in the extended table, the
Erdös-Straus conjecture is true. (Unfortunately, showing that there exists a prime that
does not occur in Table 1 does not disprove the conjecture because this only implies there
are no solutions such that p | y.) Therefore it is useful to understand the distribution of
primes among the values of α(j, k).

Theorem 2.6 Let j ∈ Z+.
(a) The sequence α(j, 1), α(j, 2), α(j, 3), ... contains infinitely many primes.
(b) Let k ∈ Z+. If α(j, k) = p for some prime p, then for all c ∈ Z+, α(j, k+cp) is divisible
by p.

The preceding theorem demonstrates important properties of the occurrence of primes
in the values of α as in Table 1. Part (a) shows that every row (and, by symmetry, every
column) contains infinitely many primes. Another interesting property of the extended
table, stated in part (b) of Theorem 2.6, is that the occurrence of primes in each column
follows a pattern similar to the Sieve of Eratosthenes. For example, α(2, 2) = 3, so every
third number after that in the second row (e.g. α(2, 5) = 33, α(2, 8) = 27, etc.) is divisible
by 3 and therefore is not another prime.

3 Proofs

In this section we present the proofs of the results of the previous section.
Proof of Theorem 2.2. We first prove the ”if” direction of the statement. Suppose there
exist divisors u and v of b with a | u+ v. Let u+ v = ma. Then, a

b
= u

mb
+ v

mb
, and the two

fractions summing to a
b

can clearly be reduced to unit fractions because u and v are divisors
of b.

Now, we prove the other direction of the statement. Suppose a
b

= 1
x

+ 1
y

for positive
integers x and y. Without loss of generality, we may assume that a and b are relatively
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prime. Let g = gcd(x, y), so that x = gx0 and y = gy0. Simple algebra shows that

ag

b
=
x0 + y0

x0y0

. (3.1)

We now show that the fraction x0+y0
x0y0

is in reduced form. Assume the contrary and suppose
that there exists a prime q which divides both x0 + y0 and x0y0. Then, q also divides
x0(x0 + y0)− x0y0 = x2

0, and so q | x0. Similarly, q | y0 also. However, this contradicts the
assumption that g = gcd(x, y). Therefore, the fraction x0+y0

x0y0
must be in lowest terms. From

equation (3.1), we gather that b is a multiple of x0y0. Let b = mx0y0. Equation (3.1) now
reduces to ag = m(x0 + y0). Because a and b are assumed to be relatively prime, a must
also be relatively prime to m. This implies that a | x0 +y0. Therefore, x0 and y0 are divisors
of b summing to a multiple of a, and the theorem has been proven.
Proof of Theorem 2.1. Proof of part (a): The statement is symmetric with respect to
x, y, and z, so we may assume without loss of generality that t = νq(x). If νq(z) = t, we are
done. Since νq(z) ≤ t by definition of maximum, we need only consider the case νq(z) < t.

For ease of notation, let s = νq(y) and r = νq(z). Then we can write x = qtx′,
y = qsy′, z = qrz′ for some x′, y′, z′ ∈ Z+. Furthermore, x′, y′, and z′ are relatively prime
to q. Substituting these values into equation (1.2) and rearranging we obtain:

(aqrz′ − p)qtx′y′ = pqrz′(y′ + qt−sx′).

(Note that qt−s ∈ Z because s ≤ t by the definition of maximum.) From this we see that
νq(pq

rz′(y′ + qt−sx′)) = νq((aq
rz′ − p)qtx′y′) ≥ t. By assumption, we have t > r, so the

transitive property yields νq(pq
rz′(y′ + qt−sx′)) > r. This implies that q | pz′(y′ + qt−sx′).

By the definition of prime, gcd(q, p) = 1, and it is stated above that gcd(q, z′) = 1, so
q | y′ + qt−sx′.

Assume s < t. Then q | qt−sx′, so q | y′. This contradicts the fact that gcd(q, y′) = 1, so
s ≥ t. Since s ≤ t as well, s = t.

Proof of part (b): Let q be an arbitrary divisor of z that is relatively prime to p. Then
z = qt for some t ∈ Z+, so by substituting into the generalized Erdös-Straus equation and
rearranging the terms,

(axy − px− py)qt = pxy.

Thus q | pxy. We conclude from the fact that q and p are relatively prime that q | xy. By
a similar argument, any divisor of y relatively prime to p divides xz, and any divisor of x
relatively prime to p divides yz.

Proof of part (c): We first show that x < p. Since x ≤ y ≤ z,
1

z
≤ 1

y
≤ 1

x
.Therefore,

a

p
=

1

x
+

1

y
+

1

z
≤ 1

x
+

1

x
+

1

x
=

3

x
.

Thus, since
a

p
≤ 3

x
and 4 ≤ a,

ax ≤ 3p < ap.

Therefore x < p. It immediately follows that p - x.
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In order to prove that p | z, note that axyz = p(xy + yz + xz), so p | axyz. Since p > a
is prime, gcd(p, a) = 1, so p | xyz. Since p is a prime, we conclude that p | x or p | y or
p | z. But p - x, so p | y or p | z.

We now proceed by indirect proof. Assume p - z. Then p | y, i.e. y = pj for some
j ∈ Z+. By the assumption, z is a divisor of z that is relatively prime to p, and so it follows
from part (b) that z | xy. By substitution, z | pjx. Since z and p are relatively prime,
z | jx and so z ≤ jx. Also, x < p, so

z ≤ jx < jp = y.

This contradicts the hypothesis that y ≤ z, and we conclude that p | z.
Proof of part (d): Let s = νp(y) and t = νp(z). We will first prove the following:

(t > 1 or s > 1)⇒ s = t. (3.2)

Assume t > 1. By the definition of ν, y = psj and z = ptk for some j, k ∈ Z+, and
furthermore, p - j and p - k. We rearrange the generalized Erdös-Straus equation and
substitute for y and z to obtain

(axpsj − px− ps+1j)pt−1k = xpsj.

Since t− 1 > 0 by assumption, p | (axjps − px− ps+1j)pt−1k and therefore p | xpsj by
substitution. Since p is prime and p - j, gcd(j, p) = 1. Also, by part (c), gcd(x, p) = 1.
Therefore p | ps, i.e. s > 0. Thus

(axps−1j − x− psj)ptk = xpsj.

This gives us pt | xpsj, and therefore pt | ps, so s ≥ t. By transitivity, s > 1, so p | ps−1.
Using modular arithmetic, we have

(axjps−1 − x− psj)k ≡ (0− x− 0)k (mod p)

≡ −xk (mod p)

6≡ 0 (mod p).

In other words, p - (axps−1j − x− psj)k. It follows that t = νp ((axjps−1 − x− psj)ptk) =
νp(xp

sj) = s.
Thus t > 1 ⇒ s = t. Since this proof did not distinguish between y and z (we did not

use the fact that y ≤ z, only that x was the least), we also have that s > 1⇒ s = t. This
proves (3.2).

From now on we consider the case a = 4.
Since p is a prime greater than 4, p is odd and therefore p ≡ 1 or 3 (mod 4). We will

consider each case separately.
Case 1: p ≡ 1 (mod 4).
Then p = 4m − 3 for some m ∈ Z+. So p

4
= m − 3

4
. By the definition of ceiling,⌈

p
4

⌉
=
⌈
m− 3

4

⌉
= m.
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From equation (1.2) we have 1
x
< 4

p
, which gives us p

4
< x. But x is assumed to be a

positive integer, so ⌈p
4

⌉
≤ x. (3.3)

By substitution, m ≤ x. Rewriting this as 1
x
≤ 1

m
, we obtain:

1

y
+

1

z
=

4

p
− 1

x
≥ 4

p
− 1

m
=

4

4m− 3
− 1

m
=

3

m(4m− 3)
.

Therefore 1
y

+ 1
z
≥ 3

m(4m−3)
. We now proceed with proof by contradiction.

Assume p2 | y or p2 | z. Let s = νp(y) and let t = νp(z). One of s or t is at least
2 by the assumption, and in either case assertion (3.2) leads to the conclusion that s = t.
Therefore p2 divides both y and z, and we can write y = p2j and z = p2k for some j, k ∈ Z+.
By substitution,

1

p2j
+

1

p2k
≥ 3

m(4m− 3)

so
1

j
+

1

k
≥ 3p2

m(4m− 3)
=

3(4m− 3)2

m(4m− 3)
= 12− 9

m
≥ 12− 9 = 3

with the last step following from the fact that m ≥ 1. We now have 3 ≤ 1
j

+ 1
k
, but also

1
j
≤ 1 and 1

k
≤ 1, so 1

j
+ 1

k
≤ 2. The two inequalities lead to the contradiction 3 ≤ 2.

Thus we conclude that p2 - y and p2 - z.
Case 2: p ≡ 3 (mod 4).
In this case p = 4m − 1 for some m ∈ Z+, and an argument similar to Case 1 shows

1
y

+ 1
z
≥ 1

m(4m−1)
, which again leads to the absurd conclusion that 3 ≤ 2.

Thus we can conclude that p2 - y and p2 - z. We have now exhausted all cases.
Proof of part (g): Suppose that there exist x, y, z satisfying z = p · lcm(x, y). Let

g = gcd(x, y) so that x = ag and y = bg. Then, z = abgp. Substituting these expressions
into equation (1.2), we obtain

g =
(a+ b)p+ 1

4ab
. (3.4)

This implies that a | bp+ 1 and b | ap+ 1. Let

bp+ 1 = ca

ap+ 1 = db

Solving this system, we find that a = p+d
cd−p2 and b = p+c

cd−p2 . Substituting these expressions

for a and b into equation (3.4) yields g = cd−p2
4

, implying that 4 | cd− p2. Clearly, p - c and
p - d. Since a and b are integers, the above expressions indicate that p + d and p + c are
divisible by m = cd − p2. Thus, c, d ≡ −p (mod m), and m = 4g = cd − p2 satisfies the
condition that p2 +m has divisors congruent to −p (mod m), as desired.

Proof of part (h): Assume x = y. Then by substituting into equation (1.2) and rear-
ranging we obtain

2(2x− p)z = px.
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Since z ∈ Z, 2(2x− p) | px. Thus 2 | px and 2x− p | px. Since p is a prime greater than
4, p is odd, so 2 | x. Hence x is even.

It is easily seen that

∀b, c, d ∈ Z, gcd(b, c) = 1⇒ gcd(b, c+ bd) = 1. (3.5)

Also, we know by part (c) that gcd(x, p) = 1, so gcd(x,−p) = 1. Thus by (3.5), gcd(x, 2x−
p) = 1. Therefore 2x − p | p, but p is prime, implying there are only two possibilities:
2x−p = p or 2x−p = 1. If 2x−p = p, then x = p, which contradicts part (c). We are left

with 2x− p = 1. Solving yields x = p+1
2

and thus y = p+1
2

and z = p(p+1)
4

. By substitution,
p+1
2

is also even, so 4 | p + 1, i.e. p ≡ 3 (mod 4). Hence if a solution with x = y exists,
p ≡ 3 (mod 4). This completes the forward directions of both propositions in the theorem.

Assume p ≡ 3 (mod 4). Then p+ 1 is divisible by 4, so both p+1
2

and p(p+1)
4

are positive

integers. Since 2
p+1

+ 2
p+1

+ 4
p(p+1)

= 4
p
, we have (p+1

2
, p+1

2
, p(p+1)

4
) is a solution in positive

integers to equation (1.2). It was given that p > 4, so p
4
> 1. Therefore p(p+1)

4
> p+1

2
, so

we have a solution (x, y, z) satisfying x = y ≤ z.
Proof of part (f): We will use the method of indirect proof. Assume gcd(y, z) = 1. Part

(c) states that p | z, which leads to the conclusion that p - y, for otherwise y and z would
not be relatively prime. Since p is prime, gcd(p, y) = 1. Now y satisfies the conditions
of part (b), so y | xz. Because of the assumption, y | x, so y ≤ x. Since it was given

that x ≤ y, x = y. Thus x = y = p+1
2

and z = p(p+1)
4

by part (h). Since p is prime and
z ∈ Z, 4 | p + 1. Therefore p + 1 = 4k for some k ∈ Z+. By substitution, z = pk and
y = x = 2k, so gcd(y, z) = k. Furthermore, since p > 4, k > 1, implying gcd(y, z) > 1,
which contradicts our assumption.

We can therefore conclude that gcd(y, z) 6= 1.
Proof of part (e): Part (c) gives us p | z, so k ∈ Z. Also, z = pk, and substituting this

into equation (1.2) and rearranging gives us

(4k − 1)xy = (x+ y)pk. (3.6)

We will now prove the forward direction of the theorem. Assume p - y. From equation
(3.6) we know p | (4k − 1)xy. But since p is prime, gcd(y, p) = 1 by the assumption, and
gcd(x, p) = 1 by part (c). Thus p | 4k− 1. It immediately follows that 4k− 1 ≡ 0 (mod p),
meaning 4k ≡ 1 (mod p).

For the reverse direction, we will prove the contrapositive of the statement. Assume
p | y. Then y = pj for some j ∈ Z+, so we can substitute into equation (3.6) and simplify
to obtain

(4k − 1)xj = (x+ y)k.

By our assumption, we know y ≡ 0 (mod p), and part (c) implies that x 6≡ 0 (mod p),
so x + y 6≡ 0 (mod p). Also, p - k, for otherwise p2 would divide z, which contradicts
part (d). Therefore p - (x + y)k, and by substitution, p - (4k − 1)xj. It follows that
4k − 1 6≡ 0 (mod p), so 4k 6≡ 1 (mod p).

We now have p | y ⇒ 4k 6≡ 1 (mod p), so the contrapositive is true: 4k ≡ 1 (mod p)⇒
p - y. Both directions have been considered, and thus p - y ⇔ 4k ≡ 1 (mod p).
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Proof of part (i): The lower bound on x was proven as assertion (3.3). We will consider
two cases for this proof, p | y and p - y.

Case 1: p | y.
In this case, p ≤ y ≤ z, so 4

p
= 1

x
+ 1

y
+ 1

z
≤ 1

x
+ 1

p
+ 1

p
. From this we have

2

p
≤ 1

x
and

thus

x ≤ p

2
<
p+ 1

2
< p ≤ y.

Therefore x ≤ p+1
2
≤ y.

Case 2: p - y.
Let k = z

p
. By part (e), 4k ≡ 1 (mod p). Thus k = pr+1

4
for some r ∈ Z+. Since

k ∈ Z+, r ≥ 1, so k ≥ p+1
4
, and therefore z ≥ p(p+1)

4
. Using 1

z
≤ 4

p(p+1)
and 1

y
≤ 1

x
in equation

(1.2) we obtain:
4

p+ 1
=

4

p
− 4

p(p+ 1)
≤ 4

p
− 1

z
=

1

x
+

1

y
≤ 2

x
.

By transitivity, 4
p+1
≤ 2

x
, so

x ≤ p+ 1

2
.

Also, 1
x

+ 1
y
< 4

p
because 1

z
is positive, and the fact that 1

y
≤ 1

x
implies 2

y
≤ 1

x
+ 1

y
. Again

by transitivity, 2
y
< 4

p
, so

p

2
< y.

From this, by the definition of ceiling,
⌈
p
2

⌉
≤ y, and since p is an odd prime,

⌈
p
2

⌉
= p+1

2
.

Thus we have x ≤ p+1
2
≤ y. We have now exhausted all cases.

Proof of part (j): Since p | y is given and p | z by part (c), y = pj and z = pk for some
j, k ∈ Z+. Part (c) tells us that gcd(x, p) = 1, which in turn implies that x | yz by part (b).
Therefore x | p2kj, implying x | kj since x and p are relatively prime. By the definition of
divides, x ≤ kj. We also have the inequality pj ≤ pk, so j ≤ k. Multiplying both sides
of this inequality by k produces kj ≤ k2. Hence x ≤ k2. Furthermore, 1

x
< 4

p
, so p

4
< x.

Since x ∈ Z+,
⌈
p
4

⌉
≤ x. By transitivity, we have

⌈
p
4

⌉
≤ k2, so√⌈p

4

⌉
≤ k

and so ⌈√⌈p
4

⌉ ⌉
≤ k

because k ∈ Z+. Let c =
⌈√⌈

p
4

⌉ ⌉
, so that c ≤ k. Then 1

pk
≤ 1

pc
.

10



Also, 1 ≤ j, so 1
pj
≤ 1

p
. Using these inequalities, the following results:

4

p
=

1

x
+

1

pj
+

1

pk
4

p
≤ 1

x
+

1

p
+

1

pc
3

p
− 1

pc
≤ 1

x

x ≤ pc

3c− 1

To further improve this bound, note that x ∈ Z+, so x ≤
⌊

pc
3c−1

⌋
.

Proof of part (k): First we prove that z 6= p by contradiction. Assume z = p. Since
gcd(y, z) 6= 1 by part (f), p | y. But y ≤ z, so y = p and substituting into equation (1.2) and
solving for x gives us x = p

2
. Since p is odd but x ∈ Z, we have a contradiction. Therefore

z 6= p and so z ≥ 2p.
We will next prove that

if p ≥ 4n2 − 10n+ 7 for some positive integer n, then z ≥ np. (3.7)

We use induction on n. The statement is clearly true for n = 1 and n = 2 because z ≥ 2p.
Now suppose the statement is true for n = c, with c ≥ 2. We demonstrate that the statement
is also true for n = c+ 1. Let p ≥ 4(c+ 1)2− 10(c+ 1) + 7 = 4c2− 2c+ 1. By the induction
hypothesis, z ≥ cp. By part (c), z is divisible by p. Thus, in order to prove that z ≥ (c+1)p,
it suffices to show that z 6= cp. For the sake of contradiction, assume that there exists a
decomposition of 4

p
in which z = cp, i.e. 4

p
= 1

x
+ 1

y
+ 1

cp
for some positive integers x and y.

Rearranging the equation yields 1
x

+ 1
y

= 4c−1
cp

. By theorem 2.2, there exist two divisors u

and v of cp for which 4c− 1 | u+ v. We now consider three different cases:
Case 1: Both u and v are divisors of c. Then u+ v ≤ 2c < 4c− 1 which contradicts the

statement that 4c− 1 | u+ v.
Case 2: Both u and v are divisible by p. Then we may let u = pd1 and v = pd2 so

that d1 and d2 are divisors of c. Therefore, 4c − 1 | p(d1 + d2). We note that for c ≥ 2,
4c − 1 < 4c2 − 2c + 1 ≤ p. Hence, p and 4c − 1 are relatively prime to each other and so
4c− 1 | d1 + d2. However, d1 + d2 ≤ 2c < 4c− 1, which yields a contradiction.

Case 3: Only one of u and v is divisible by p. Without loss of generality assume p | u.
We let u = pd1 and v = d2 where d1 and d2 are divisors of c. To calculate values for x and
y which correspond to our choice of u and v, note that

4c− 1

cp
=
pd1 + d2

cp(pd1+d2)
4c−1

=
pd1

cp(pd1+d2)
4c−1

+
d2

cp(pd1+d2)
4c−1

=
1

c(pd1+d2)
d1(4c−1)

+
1

cp(pd1+d2)
d2(4c−1)

.

By part (c), p - x, from which we deduce that x = c(pd1+d2)
d1(4c−1)

and y = cp(pd1+d2)
d2(4c−1)

. Note that

(4c− 2)d2

d1

≤ c(4c− 2) < 4c2 − 2c+ 1 < p.

11



We observe that

y =
cp(pd1 + d2)

d2(4c− 1)
>
cp
((

(4c−2)d2
d1

)
d1 + d2

)
d2(4c− 1)

= cp = z.

This is clearly a contradiction because we must have y ≤ z.
Since all three cases result in a contradiction, z 6= cp and assertion (3.7) follows.
Finally, define f(a) = 4a2 − 10a + 7. Let r be the (greater) positive real number such

that f(r) = p. Solving this for r, we find that r = 5+
√

4p−3
4

. Applying assertion (3.7), we
find that z ≥ rp if r is an integer. If r is not an integer, we simply note that p ≥ f(brc),
since r > 2. Hence, z ≥ brcp. Either way, z ≥ b5+

√
4p−3
4
cp.

For the upper bound, note that since gcd( z
p
, p) = 1 by parts (c) and (d), z

p
| xy by part

(b). Thus z | pxy, and so z ≤ pxy. Also,
⌈
p
4

⌉
≤ x by part (i) and 1

y
≥ 1

z
, so

2

y
=

1

y
+

1

y
≥ 1

y
+

1

z
=

4

p
− 1

x
≥ 4

p
− 1⌈

p
4

⌉ =
4
⌈
p
4

⌉
− p

p
⌈
p
4

⌉ .

Thus y ≤ 2pd p
4e

4d p
4e−p

. But x ≤ p+1
2

by part (i), so

z ≤ pxy ≤ p

(
p+ 1

2

)(
2p
⌈
p
4

⌉
4
⌈
p
4

⌉
− p

)
.

Therefore z ≤ p2(p+1)d p
4e

4d p
4e−p

.

Before proving our remaining theorems we require a simple Lemma.

Lemma 3.1 ∀k, j ∈ Z+, 4kj − k − j > kj.

Proof. Assume the negation of the statement, i.e. that 4kj−k− j ≤ kj for some j, k ∈ Z+.
Then 3kj − j ≤ k, implying j ≤ k

3k−1
. Since k ∈ Z+, it is clear that k

3k−1
< 1, so j < 1.

This contradicts the fact that j ∈ Z+, and we have 4kj − k − j > kj by indirect proof.
Proof of Theorem 2.4. We begin by proving that if j, k ∈ Z+, g = gcd(j, k), and p > 4
is a prime, (

∃x ∈ Z+,
4

p
=

1

x
+

1

pj
+

1

pk

)
⇔ 4kj − k − j

g
| pg. (3.8)

By the definition of gcd, j = j′g and k = k′g for some j′, k′ ∈ Z+. Furthermore,
gcd(j′, k′) = 1. We now prove the forward implication.

Assume ∃x ∈ Z+, 4
p

= 1
x

+ 1
pj

+ 1
pk
. Solving for x, we find that

x =
pkj

4kj − k − j
. (3.9)

Substituting for j and k,

x =
pk′j′g2

4k′j′g2 − k′g − j′g
=

pk′j′g

4k′j′g − k′ − j′
.
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Since x ∈ Z+, 4k′j′g − k′ − j′ | pk′j′g. However, gcd(j′, k′) = 1, so by statement (3.5),
gcd(j′, 4k′j′g−k′−j′) = 1, and similarly gcd(k′, 4k′j′g−k′−j′) = 1. Thus 4k′j′g−k′−j′ | pg.
But 4k′j′g− k′ − j′ = 4kj−k−j

g
, so by substitution, 4kj−k−j

g
| pg. This completes the forward

direction of the proof.
Now, assume 4kj−k−j

g
| pg. Then 4kj − k − j | pg2, and pg2 | pkj, so 4kj − k − j | pkj.

By the definition of divides, ∃x ∈ Z+, x(4kj − k − j) = pkj, or equivalently,

1

x
+

1

pj
+

1

pk
=

4

p
.

This completes the proof of assertion (3.8).
Note that 4

p
= 1

x
+ 1

pj
+ 1

pk
for some positive integer x if and only if 4kj − k − j | pkj by

equation (3.9). We wish to show that if there exists a prime p such that 4kj − k − j | pkj,
then that is the only prime for which the statement is true.

Assume there exists a prime p such that 4kj − k − j | pkj. It follows from Lemma 3.1
that 4kj − k − j - kj. This implies that p | 4kj − k − j because p is prime. By part (d) of
Theorem 2.1, gcd(j, p) = gcd(k, p) = 1. Hence gcd(g, p) = 1, so p | 4kj−k−j

g
as well.

Finally, assume there is another prime q 6= p such that 4
q

= 1
x

+ 1
qj

+ 1
qk

for some x ∈ Z+.

Assertion (3.8) implies 4kj−k−j
g

| qg. However, this implies p | qg, which is a contradiction
since both q and g are relatively prime to p. Therefore there exists at most one prime p
such that 4

p
= 1

x
+ 1

pj
+ 1

pk
for some positive integer x.

We now show that when such a prime p exists, p = α(j, k). Since p | 4kj−k−j
g

,

4kj − k − j
g

= pm (3.10)

for some m ∈ Z+. Since 4kj−k−j
g

| pg, we have m | g. This implies m is a common

divisor of g and 4kj−k−j
g

and thus m | gcd(g, 4kj−k−j
g

). We now prove by contradiction that

m = gcd(g, 4kj−k−j
g

).

Assume m 6= gcd(g, 4kj−k−j
g

). Then
gcd(g, 4kj−k−j

g
)

m
is a divisor of g greater than 1. We

know p = 4kj−k−j
gm

by (3.10), and 4kj−k−j
g

= w · gcd(g, 4kj−k−j
g

) for some w ∈ Z+ by the

definition of gcd. Thus p = 4kj−k−j
gm

= w · gcd(g, 4kj−k−j
g

)

m
, which is a multiple of a divisor of g

greater than 1, as stated above. This implies gcd(g, p) 6= 1, but this contradicts part (d) of
Theorem 2.1.

Therefore m = gcd(g, 4kj−k−j
g

) and by substitution, p = α(j, k).

Proof of Theorem 2.6. Proof of part (a): Let Ak = α(j, k) for all k ∈ Z+. Let k ∈ Z+

be arbitrary. We will begin by proving indirectly that Ak 6= 1.
Assume Ak = 1. Then 4kj−k−j

g
= gcd(4kj−k−j

g
, g) by the definition of Ak. From this we

have 4kj−k−j
g
| g, so 4kj − k − j | g2. Also, g2 | kj, so 4kj − k − j | kj and thus

4kj − k − j ≤ kj.

This contradicts Lemma 3.1, and we can conclude ∀k ∈ Z+, ak 6= 1.
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Let B be a sequence defined by Bk = (4j − 1)k − j. Then B is an arithmetic sequence
with first term 3j−1 and difference 4j−1, which are relatively prime because their difference,
j, is relatively prime to 4j − 1 by statement (3.5). By Dirichlet’s Theorem, the sequence
B1, B2, ... contains infinitely many primes.

Note that ∀k ∈ Z+, Ak | Bk. Let q ∈ Z+ such that Bq is prime. Then Aq | Bq, so Aq = 1
or Aq = Bq. Since Aq 6= 1, we have Aq = Bq and thus Aq is also prime. Therefore the set
of all q such that Bq is prime is a subset of the set of all q such that Aq is prime, and so
the latter set is also infinite. Thus the sequence α(j, 1), α(j, 2), ... contains infinitely many
primes.

Proof of part (b): Let p = α(j, k) and assume p is prime. Let c ∈ Z+ be arbitrary,

let g2 = gcd(j, k + cp), and for ease of notation let b = g2 · gcd(g2,
β(j,k+cp)

g2
). We know

by part (d) of Theorem 2.1 that p - j, so p - g2 and therefore p - b. Now, α(j, k + cp) =
4j(k+cp)−j−k−cp

b
= 4kj−k−j+(4jc−c)p

b
. Because α(j, k) | 4kj − k − j, we have p | 4kj − k − j.

Thus p | 4kj − k − j + (4jc− c)p, and since p - b, we conclude that p | α(j, k + cp).

4 Conclusion

There are many interesting properties of the solutions to the underlying equation of the
Erdös-Straus conjecture, a famous and long-standing open problem in number theory. Mo-
tivated by the desire to prove this conjecture, our research has revealed several new such
properties, involving symmetry in the prime factorizations of solutions, limitations and
bounds on their sizes, and modular restrictions. One application of these properties is to
improve the efficiency of computer algorithms which search for solutions and/or test for
other properties. Furthermore, these results may aid in finding a proof of the conjecture
by narrowing the possibilities.

Additionally, our restatements of the Erdös-Straus conjecture open up several new paths
to attack the problem. In particular, the result on the existence of decompositions of a ra-
tional number into two unit fractions provides a sufficient condition to prove the conjecture.
In addition, a complete understanding of the occurrence of primes among the values of the α
function would also be sufficient to resolve the problem. It is our hope that future research
using either of these two approaches will eventually result in a proof of the Erdös-Straus
conjecture itself.
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