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Abstract

All continuous endomorphisms f∞ of the shift dynamical system S on the 2-
adic integers Z2 are induced by some f : Bn → {0, 1}, where n is a positive integer,
Bn is the set of n-blocks over {0, 1}, and f∞ (x) = y0y1y2 . . . where for all i ∈ N,
yi = f(xixi+1 . . . xi+n−1). Define D : Z2 → Z2 to be the endomorphism of S induced
by the map {(00, 0) , (01, 1) , (10, 1) , (11, 0)} and V : Z2 → Z2 by V (x) = −1 − x.
We prove that D, V ◦D, S, and V ◦S are conjugate to S and are the only continuous
endomorphisms of S whose parity vector function is solenoidal. We investigate the
properties of D as a dynamical system, and use D to construct a conjugacy from
the 3x + 1 function T : Z2 → Z2 to a parity-neutral dynamical system. We also
construct a conjugacy R from D to T . We apply these results to establish that,
in order to prove the 3x + 1 conjecture, it suffices to show that for any m ∈ Z+,
there exists some n ∈ N such that R−1 (m) has binary representation of the form
x0x1 . . . x2n−1 or x0x1x2 . . . x2n .

1 Introduction

A discrete dynamical system is a function from a set or metric space to itself [4]. Given
two dynamical systems f : X → X and g : Y → Y , a function h : X → Y is a
morphism from f to g if h ◦ f = g ◦ h. A morphism from a dynamical system to itself is
called an endomorphism. A bijective morphism is called a conjugacy, and a bijective
endomorphism is called an autoconjugacy. Note that conjugacies on metric spaces are
not assumed to be continuous.

Let Z2 be the ring of 2-adic integers. Each element of Z2 is a formal sum
∑∞

i=0 2ixi
where xi ∈ {0, 1} for all i ∈ N. The binary representation of x =

∑∞
i=0 2ixi is the infinite

sequence of zeroes and ones x0x1x2 . . .. (Throughout this paper xi−1 will denote the ith
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digit of the binary representation of a 2-adic integer x.) Note that Z ⊆ Z2. For example,
13 = 1 · 20 + 0 · 21 + 1 · 22 + 1 · 23, so the 2-adic binary representation of 13 is 10110, where
the overbar represents repeating digits as in decimal notation. The binary representation
of −1 is 1, since 1 + 1 = 11 + 10 = 0 = 0.

By interpreting Z2 as the set of all binary sequences, there is a natural topology on Z2,
namely the product topology induced by the discrete topology on {0, 1}. This topology
is also induced by the metric δ on Z2 defined by δ(x, y) = 2−k where k is the smallest
natural number such that xk 6= yk.

The shift dynamical system, S : Z2 → Z2, is a well-known map, continuous with
respect to the 2-adic topology, defined by S (x0x1x2 . . .) = x1x2x3 . . .. This map can
be extended to the shift map σ on binary bi-infinite sequences . . . x−2x−1x0x1x2 . . . by
defining σ(x) = y where yi = xi+1 for all integers i.

In [5], Hedlund classified all continuous endomorphisms of the shift dynamical system
σ on bi-infinite sequence space ({0, 1}Z with the product topology). Lind and Marcus [4]
also stated this result, referring to the continuous endomorphisms of σ as sliding block
codes.

In section 2, we will show that the continuous endomorphisms of S on Z2 can be
classified as follows. For each n ∈ Z+, let Bn be the set of all binary sequences (or
blocks) of length n. Then every continuous endomorphism of S is induced by a function
f : Bn → {0, 1} for some n. The endomorphism induced by such an f is the map
f∞ : Z2 → Z2 defined by f∞ (x) = y0y1y2 . . . where yi = f(xixi+1 . . . xi+n−1) for all i ∈ N.
These results are analogous to those already obtained for σ on {0, 1}Z.

These endomorphisms have applications to the famous 3x + 1 conjecture. This con-
jecture states that the T -orbit {T i(x)}∞i=0 of any positive integer x contains 1, where
T : Z2 → Z2 is defined by

T (x) =

{
x/2 if x is even
(3x+ 1) /2 if x is odd

.

In [3], Lagarias proved that there exists a continuous conjugacy Φ from S to T , whose
inverse is also continuous. Since conjugacies preserve dynamics (fixed points, cycles,
divergent orbits, etc.), the dynamics of S are the same as those of T . Furthermore, we
can combine these results to classify all continuous endomorphisms of T . A map H is
a continuous endomorphism of T if and only if H = Φ ◦ f∞ ◦ Φ−1 for some continuous
endomorphism f∞ of S.

Hedlund also showed that exactly two of the continuous endomorphisms of σ are
autoconjugacies. It can be shown that this is true for Z2 as well (cf. [5], [6]). The two
continuous autoconjugacies of S are the bit complement map V = f∞ where f is the map
sending the block 0 to 1 and the block 1 to 0, and the identity map I =1Z2 (induced by
the map sending 0 to 0 and 1 to 1). Monks and Yazinski [6] investigated the corresponding
autoconjugacies of T , namely Ω = Φ ◦ V ◦ Φ−1 and the identity map, respectively.

Continuing the line of research of Monks and Yazinski, it is natural to investigate the
continuous endomorphisms of S which are not autoconjugacies. Note that each of these
maps, in addition to being an endomorphism of S, is a dynamical system in its own right.
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As such, it is natural to ask which of these dynamical systems are conjugate to S (and
hence to T ).

Let f : B2 → {0, 1} be defined by f(00) = f(11) = 0 and f(01) = f(10) = 1, and
define the discrete derivative D : Z2 → Z2 by D = f∞. In section 5, we find that D
is in fact conjugate to T . Furthermore, the dynamical systems D, S, and their “duals”
(formed by interchanging the symbols 0 and 1) are the only endomorphisms of the shift
dynamical system having a certain property (see section 3, Theorem 3.3). In section 4,
we thoroughly investigate the dynamics of D : Z2 → Z2, and apply these results to the
3x+ 1 conjecture in section 5.

2 Continuous endomorphisms of the shift map

We begin by classifying all continuous endomorphisms of the shift dynamical system
S : Z2 → Z2. As in the classification of the continuous endomorphisms of the shift map
on bi-infinite sequence space, each such endomorphism is characterized by a “block code”
as follows.

Definition 1 Let Bn denote the set of all length-n sequences x0x1 . . . xn−1 where each
xi ∈ {0, 1}. For any function f : Bn → {0, 1}, we define f∞ : Z2 → Z2 by f∞(x) = y
where yi = f(xixi+1 . . . xi+n−1).

Theorem 2.1 A map F : Z2 → Z2 is a continuous endomorphism of the shift map S if
and only if there is a positive integer n such that F = f∞ for some f : Bn → {0, 1}.

Proof. First note that Z2 is homeomorphic to the (middle thirds) Cantor set. (See [2].)
The Cantor set is a closed and bounded subset of R, so it is compact by the Heine-Borel
theorem. Hence, Z2 is a compact metric space.

Let n be a positive integer, and let f : Bn → {0, 1} be arbitrary. We show f∞ is a
continuous endomorphism of S.

To show f∞ is continuous, we show that the inverse image of every open ball is open.
Let B(x, ε) be an arbitrary open ball in the metric space Z2. Let k be the smallest
nonnegative integer such that 2−k < ε. Then B(x, ε) is the set of all 2-adic integers y such
that the first k digits of y are the same as the first k digits of x.

Let a ∈ f−1
∞ (B(x, ε)) be arbitrary, and let b ∈ B(a, 2−(k+n−2)). Note that the first

k + n − 1 digits of b are a0 . . . ak+n−2. Then for any nonnegative integer m ≤ k − 1, we
have (f∞(b))m = f(bmbm+1 . . . bm+n−1) = f(amam+1 . . . am+n−1) = xm. Hence the first k
digits of f∞(b) are the same as those of x, so it follows that f∞(b) ∈ B(x, ε). Since b was
arbitrary, it follows that any member of B(a, 2−(k+n−2)) maps to an element of B(x, ε)
under f∞. Hence, B(a, 2−(k+n−2)) ⊂ f−1

∞ (B(x, ε)). Since a was arbitrary, it follows that
f−1
∞ (B(x, ε)) is open, as desired.
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To show f∞ is an endomorphism of S, let x ∈ Z2 be arbitrary. Then for any positive
integer i,

(f∞(S(x)))i = f(S(x)iS(x)i+1 . . . S(x)i+n−1)

= f(xi+1xi+2 . . . xi+n)

= (f∞(x))i+1

= (S(f∞(x)))i

Hence, f∞ is a continuous endomorphism of S.
It now remains to show that such maps are the only continuous endomorphisms of

S. Let F : Z2 → Z2 be a continuous endomorphism of S. Since Z2 is a compact metric
space and F is continuous, it follows by the Heine-Cantor theorem that F is uniformly
continuous. Hence, choosing ε = 1, there is a positive real number δ > 0 such that any
two elements x and y of Z2 which are separated by at most δ have the property that the
distance between F (x) and F (y) is less than ε = 1, i.e. they match in the first digit.

Let n be the smallest positive integer such that 2−n < δ. Then any two elements x and
y having x0 . . . xn−1 = y0 . . . yn−1 satisfy (F (x))0 = (F (y))0. We can now define the map
f : Bn → {0, 1} by f(a0a1 . . . an−1) = (F (a0a1 . . . an−1000 . . .))0. We show that F = f∞.

Since F is an endomorphism of S, we have F ◦ S = S ◦ F . We have that F (x)0 =
f(x0x1 . . . xn−1) = f∞(x)0 for any x. We use this as the base case to show by induction
that F (x)i = f∞(x)i for any nonnegative integer i and x ∈ Z2. Let i be a positive integer
and assume F (x)i−1 = f∞(x)i−1 for any x ∈ Z2. Then since f∞ commutes with S by the
above argument, we have

(F (x))i = (S(F (x)))i−1

= (F (S(x)))i−1

= (f∞(S(x)))i−1

= (S(f∞(x)))i−1

= (f∞(x))i

This completes the induction.

3 Conjugacies to the shift dynamical system

For any x, y ∈ Z2, we write x ≡
n
y if x is congruent to y mod 2n, i.e. if the binary

representations of x and y match in the first n digits. We extend this notation to include
finite sequences, for example, 1011 ≡

2
100. Lagarias defined Φ−1 by Φ−1(x) = a0a1a2 . . .

where ai ≡
1
T i(x). We call Φ−1 the T -parity vector function and generalize this definition

as follows.

Definition 2 Let F : Z2 → Z2. The F -parity vector function is the map PF : Z2 →
Z2 given by PF (x) = a0a1a2 . . . where ai ∈ {0, 1} and ai ≡

1
F i(x) for all i ∈ N.
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It is easily shown that the parity vector function PF of every dynamical system F :
Z2 → Z2 is a morphism from F to S. To see this, let x ∈ Z2 and let a = PF (x).
Then S(Pf (x)) = a1a2a3 . . . by the definition of S. By the definition of PF , PF (F (x)) =
b0b1b2 . . . where bi ≡

1
F i(F (x)). Thus bi ≡

1
F i+1(x) ≡

1
ai+1 for all i ∈ N, so PF (F (x)) =

S(PF (x)). Therefore PF ◦ F = S ◦ PF .
Note that F is not assumed to be continuous in the definition above. In the case

that F is continuous with respect to the 2-adic topology, the composition of continuous
functions F i is also continuous for each i. Thus, if F is continuous then its parity vector
function PF is continuous as well.

Since every parity vector function is a morphism, it is natural to ask which of these are
bijections and therefore conjugacies. The following theorem classifies all functions that
are conjugate to S by their parity vector functions.

Theorem 3.1 Let F : Z2 → Z2, not necessarily continuous. Then PF is a conjugacy from
F to S if and only if F = P−1 ◦ S ◦ P for some parity-preserving bijection P : Z2 → Z2

(and in this situation PF = P ).

Proof. Assume PF is a conjugacy from F to S. Then F = P−1
F ◦S ◦PF by the definition

of conjugacy. By definition, PF is parity-preserving, since PF (x) ≡
1
x.

Now assume that there exists a parity-preserving bijection P : Z2 → Z2 such that
F = P−1 ◦ S ◦ P . It follows by induction on n that F n = P−1 ◦ Sn ◦ P for all n ∈ Z+.

Let x ∈ Z2. Then for all n ∈ Z+, F n(x) ≡
1
P−1(Sn(P (x))) ≡

1
Sn(P (x)) since P is

parity-preserving. Let a = P (x). Then Sn(P (x)) ≡
1
an, so F n(x) ≡

1
an for all n, and thus

P (x) = PF (x). Since x was arbitrary, P = PF . Also, we know P is a conjugacy from F
to S, so PF is a conjugacy from F to S as well.

Lagarias [3] showed that Φ−1 = PT is bijective by showing it has a property later
named in [1]. Bernstein and Lagarias called a function h : Z2 → Z2 solenoidal if for all
k ∈ Z+, x ≡

k
y ⇔ h(x) ≡

k
h(y). Such a map induces a permutation of Z2/2

kZ2 for all

k ∈ Z+.
Bernstein and Lagarias [1] also showed that any solenoidal map h : Z2 → Z2 is an

isometry (bijective and continuous with continuous inverse). Since PF is a morphism from
F to S, we obtain the following corollary.

Corollary 3.2 Let F : Z2 → Z2. If PF is solenoidal, then F is continuous and PF is a
conjugacy from F to S.

Hence, we can prove that a function is conjugate to the shift map by showing that
its parity vector function is solenoidal. In particular, it is of interest to determine which
continuous endomorphisms of S have a solenoidal parity vector function. In order to
classify these, we define a specific endomorphism D as follows.

Definition 3 Let f : B2 → {0, 1} be the map {(00, 0), (01, 1), (10, 1), (11, 0)}. We define
the discrete derivative D : Z2 → Z2 by D = f∞.
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Note that D (x) is obtained by replacing each subsequence xixi+1 of the 2-adic binary
representation of x with

x′i = |xi − xi+1| ,

so D resembles a discrete derivative, explaining our nomenclature. (The natural extension
of this map to bi-infinite sequences has been discussed in [4], pp. 4, 16.)

Let V : Z2 → Z2 be the map V (x) = −1 − x. Note that V (x) is obtained by
interchanging the symbols 0 and 1 in the binary representation of x. The “dual” V ◦D
of D is induced by {(00, 1), (01, 0), (10, 0), (11, 1)} and is essentially the same as D if one
were to interchange the symbols 0 and 1. For simplicity of notation we let P = PD.

Theorem 3.3 The functions D, V ◦D, S, and V ◦ S are the only continuous endomor-
phisms of S with solenoidal parity vector functions.

Combining this theorem with Corollary 3.2, we obtain the following result.

Corollary 3.4 D is conjugate to S by its parity vector function P.

Before we present the proof of Theorem 3.3 we first prove two technical lemmas.

Definition 4 For every positive integer n ≥ 2, define d : Bn → Bn−1 by d(x0x1 . . . xn−1) =
y0y1 . . . yn−2 where yi = |xi − xi+1| for 0 ≤ i ≤ n− 2.

Note that d is essentially D defined on finite sequences.

Lemma 3.5 Let x ∈ Z2, n ∈ Z+, and y = Dn(x). For all i ∈ N, yi = dn(xixi+1 . . . xi+n).

Proof. We proceed by induction on n. For the base case, n = 1, we see that for all i,
yi = |xi − xi+1| = d(xixi+1) by the definition of D and d.

Assume the assertion is true for n, and let i ∈ N. Then dn+1(xixi+1 . . . xi+n+1) =
dn(d(xixi+1 . . . xi+n+1)) = dn (zizi+1 . . . zi+n) where zj = |xj − xj+1| for all j. Note that
D(x) = z0z1z2 . . . by the definition of D. Let y = Dn(D(x)). By the inductive hypothesis,
we have yi = dn(zizi+1 . . . zi+n). ThusDn+1(x) = Dn(D(x)) = y and dn+1(xixi+1 . . . xi+n+1) =
dn(zizi+1 . . . zi+n) = yi, so our induction is complete.

Lemma 3.6 Let n ∈ Z+, x0x1 . . . xn−1xn ∈ Bn+1, and v = 1−xn. Then dn(x0x1 . . . xn−1xn) 6=
dn(x0x1 . . . xn−1v).

Proof. Again, we show this by induction on n. The base case, n = 1, is clearly true since
d(01) 6= d(00) and d(11) 6= d(10).

Let n ∈ Z+ and assume the assertion is true for n. Let x0x1 . . . xnxn+1 ∈ Bn+2 and
define v = 1 − xn+1. Let d(x0x1 . . . xnxn+1) = y0y1 . . . yn−1yn. Then d(x0x1 . . . xnv) =
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y0y1 . . . yn−1w where w = d(xnv). We know w = d(xnv) 6= d(xnxn+1) = yn, and since
w, yn ∈ {0, 1}, we conclude that w = 1− yn. By the inductive hypothesis, we have

dn+1(x0x1 . . . xnxn+1) = dn(d(x0x1 . . . xnxn+1))

= dn(y0y1 . . . yn−1yn)

6= dn(y0y1 . . . yn−1w)

= dn(d(x0x1 . . . xnv)

= dn+1(x0x1 . . . xnv)

and the induction is complete.
We are now ready to prove Theorem 3.3.

Proof. We first show that P is solenoidal. Let k ∈ Z+ and x ∈ Z2. For all i ≤ k − 1, we
have by Lemma 3.5 that Di(x) ≡

1
di(x0x1 . . . xi). Thus the finite sequence a0 . . . ak−1 where

ai ≡
1
Di(x) is entirely determined by the first k digits of x, i.e. x ≡

k
y ⇒ P(x) ≡

k
P(y).

Let x, y ∈ Z2 be such that P (x) ≡
k
P (y) and let a0 . . . ak−1 be the first k digits

of P(x) and P(y). We will show that x ≡
k
y. Assume to the contrary that x 6≡

k
y.

Then x0x1 . . . xk−1 6= y0y1 . . . yk−1. Let j be the smallest nonnegative integer such that
xj 6= yj (note that j < k), so that y0y1 . . . yj−1 = x0x1 . . . xj−1 and yj = 1 − xj. Then
by Lemma 3.5, we have aj ≡

1
Dj(x) ≡

1
dj(x0x1 . . . xj) and aj ≡

1
Dj(x) ≡

1
dj(y0y1 . . . yj) =

dj(x0x1 . . . xj−1yj). But by Lemma 3.6, dj(x0x1 . . . xj) 6= dj(x0x1 . . . xj−1yj), so aj 6= aj, a
contradiction. We conclude that x ≡

k
y, and hence P is solenoidal.

Observe that V ◦D is induced by {(00, 1), (01, 0), (10, 0), (11, 1)}, which is exactly the
same map as that which induces D except with 0 and 1 interchanged. With this in mind,
we see that since P is solenoidal, PV ◦D must be solenoidal as well.

For PS, let x ∈ Z2. By the definition of S, for all k ∈ N, Sk(x) ≡
1
xk. Thus

PS(x) = x0x1x2 . . . = x and therefore PS = I . Since I is clearly solenoidal, PS is as well.
Let vi = 1 − xi for all i ∈ N. Note that the “dual” shift map V ◦ S is induced

by the function {(00, 1), (01, 0), (10, 1), (11, 0)}, so V ◦ S (x) = v1v2v3 . . .. Similarly,
(V ◦ S)2 (x) = x2x3x4 . . .. Continuing this pattern, it follows by induction that

(V ◦ S)n (x) =

{
xnxn+1xn+2 . . . if n is even
vnvn+1vn+2 . . . if n is odd

Taking the V ◦ S-orbit of x mod 2, we obtain PV ◦S(x) = x0v1x2v3x4v5 . . .. This implies
that the first k digits of PV ◦S(x) are entirely determined by the first k digits of x and vice
versa, and thus PV ◦S is solenoidal.

We now know that the parity vector functions of D, V ◦D, S, and V ◦S are solenoidal.
To show that these are the only ones, we first eliminate all endomorphisms induced by a
map f : B1 → {0, 1}. Clearly PV and PI are not solenoidal, since PV (x) is either 10 or
01 for all x by the definition of V , and PI (x) is either 1 or 0 for all x by the definition
of I. The trivial maps induced by {(0, 0), (1, 0)} and {(0, 1), (1, 1)} map everything to 0
and 1 respectively, and thus their parity vector functions are not solenoidal.
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We now examine endomorphisms induced by f : B2 → {0, 1}. There are sixteen such
maps, four of which are equivalent to the endomorphisms induced by a map f : B1 →
{0, 1}. For example, if s = {(00, 0), (01, 0), (10, 1), (11, 1)}, then f∞ = I since the second
digit is irrelevant. Another four are D, V ◦D, S, and V ◦ S. The remaining eight maps
are induced by a function which sends three of 00, 01, 10, 11 to 0 and the other to 1 or
vice versa. Consider as an illustrative case s = {(00, 1), (01, 1), (10, 1), (11, 0)}. In this
case, f∞ never maps an even 2-adic integer to an even 2-adic integer, since whether x0x1

is 00 or 01, f∞(x) begins with 1. Thus Pf∞(x) cannot have 00 as its first two digits, and
it is not solenoidal. The other seven cases are similar.

Finally, we show by induction that for any n ≥ 1 and any f : Bn → {0, 1}, either
f∞ ∈ {D, V ◦D,S, V ◦ S} or Pf∞ is not solenoidal. The base cases n = 1 and n = 2 are
done above.

Let n ≥ 2, assume the assertion is true for n, and let f : Bn+1 → {0, 1}. We consider
two cases.

Case 1: Suppose that for all b = b0b1 . . . bn and c = c0c1 . . . cn ∈ Bn+1, s(b) = s(c)
whenever b ≡

n
c. Then f∞ = t∞ where t : Bn → {0, 1} is defined by t(b0b1 . . . bn−1) =

s(b0b1 . . . bn−10) = s(b0b1 . . . bn−11). By the inductive hypothesis, either t∞ is a member
of {D, V ◦D,S, V ◦ S} or Pt∞ is not solenoidal, and we are done.

Case 2: Suppose that for some b0b1 . . . bn−1 ∈ Bn, the digits s(b0b1 . . . bn−10) and
s(b0b1 . . . bn−11) are distinct. Let x, y ∈ Z2 be such that x ≡

n+1
b0b1 . . . bn−10 and y ≡

n+1

b0b1 . . . bn−11. Then f∞(x) 6≡
1
f∞(y), and thus Pf∞(x) 6≡

2
Pf∞ (y). Also, since n ≥ 2,

we have x ≡
2
y. Hence, Pf∞ does not induce a permutation on Z2/2

2Z2, so Pf∞ is not

solenoidal.
This completes the induction, and we conclude that D, V ◦D, S, and V ◦ S are the

only endomorphisms of S with solenoidal parity vector functions.

4 Dynamics of D

Let us consider the implications of Theorem 3.3 and Corollary 3.4. The map D, although
defined as a specific endomorphism of S, is actually conjugate to S when viewed as a
dynamical system on its own. In addition, D is special in that only D, S itself, and their
duals V ◦D and V ◦S have solenoidal parity vector functions. This provides incentive to
further investigate the dynamical system D : Z2 → Z2.

To begin our investigation of the dynamics of D, we observe some properties of the
function itself.

Lemma 4.1 Let x ∈ Z2 and y = D(x). Then for any i ∈ N, yi = |xi − xi+1|, xi+1 =
|xi − yi|, and xi = |xi+1 − yi|.

Proof. Let i ∈ N. There are four cases to consider: xixi+1 = 00, 01, 10, or 11.
Case 1: Suppose xixi+1 = 01. By the definition of D, yi = |xi − xi+1| = 1. Also,

xi+1 = 1 = |0− 1| = |xi − yi| and xi = 0 = |1− 1| = |xi+1 − yi|.
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The remaining three cases are similar.
The symmetry of D revealed by Lemma 4.1 implies a surprising and beautiful sym-

metry of the function P , the D-parity vector function.

Theorem 4.2 P2 = I. Equivalently, P = P−1.

Proof. Let x ∈ Z2, and let A be the infinite matrix defined as follows. For all i, j ∈ N,
A[i, j] is aj where a = Di(x), i.e. the i+ 1st row of A consists of the digits of Di(x). Note
that the leftmost column of A (with j = 0) consists of the digits of P(x).

By Lemma 4.1, we see that for all i, j ∈ N, A[i, j+1] = |A[i, j]− A[i+ 1, j]|. Let j ∈ N.
Define di = A[i, j] and ei = A[i, j+1]for all i. Then for all i ∈ N, ei = |di − di+1|, so by the
definition of D, D (d0d1d2 . . .) = e0e1e2 . . .. Thus the 2-adic integer formed by the entries
of the j + 1st column in A is D of the 2-adic integer formed by the jth column for any j.
This implies that for all j ∈ N, the digits of Dj(P(x)) are the entries of the j+1st column
of A, so Dj(P(x)) ≡

1
A [0, j] = xj. By the definition of P , P(P(x)) = x0x1x2 . . . = x. We

conclude that P2 = I.
Theorem 4.2 shows, remarkably, that the D-parity vector of the D-parity vector of a

2-adic integer is itself. In other words, P is an involution.
It is well-known that any function h : X → Y induces an equivalence relation ≈ on X

defined by x ≈ y if and only if h(x) = h(y). This equivalence relation in turn induces a
quotient set Qh of equivalence classes mod ≈. Consider the quotient set QD induced by
D. Due to the symmetry of D shown in Lemma 4.1, we have the following:

Theorem 4.3 QD = {{x, V (x)} | x ∈ Z2}.

Proof. Let x, y ∈ Z2 and v = V (x). Assume y = D (x). By Lemma 4.1,

xi+1 = |xi − yi| (4.1)

for all i ≥ 0. If x0 = 0, equation (4.1) is a recursion for the sequence x0, x1, x2, . . . and
thus there is exactly one even x such that D(x) = y. Similarly, there is exactly one odd
x such that D(x) = y. Therefore, each class in the quotient set induced by D has two
elements, one even and one odd. By the definition of V , vi = 1− xi for all i. Thus for all
i, |vi − vi+1| = |(1− xi)− (1− xi+1)| = |xi − xi+1| = yi and so D(V (x)) = y = D(x). We
conclude that each equivalence class mod ≈ consists of two elements, x and V (x).

4.1 Periodic Points

It is desirable to classify the fixed points and periodic points of any dynamical system.
There are exactly two fixed points of S, namely 0 and 1. Since D is conjugate to S there
are exactly two fixed points of D, namely 0 and 10. To classify the remaining periodic
points of D, we introduce some new notation.
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Definition 5 Let x be a 2-adic integer with an eventually repeating binary representation
x0x1 . . . xt−1xtxt+1 . . . xt+m−1. Then x is in reduced form if and only if xt−1 6= xt+m−1

and m is the least integer such that x can be expressed in this form. For any x having
reduced form x0x1 . . . xt−1xtxt+1 . . . xt+m−1, we define the S-period length ‖x‖ = m and
the S-preperiod length x = t.

Note that x is cyclic for S if and only if x = 0.

Definition 6 An eventually repeating 2-adic integer that has reduced form

x0x1 . . . xt−1xtxt+1 . . . xt+m−1

is half-flipped if and only if m is even and for all i ≥ t, xi = 1− xi+m/2.

For instance, the 2-adic integers 1100 and 010110100 are half-flipped.
In order to avoid confusion between 2-adic integers which are periodic (or eventually

periodic) points of D and those having repeating (or eventually repeating) binary repre-
sentation, we will refer to the former as D-periodic (or eventually D-periodic) and
the latter as repeating or eventually repeating. Note that x has an eventually peri-
odic S-orbit if and only if x is eventually repeating. It is much less obvious which 2-adic
integers have an eventually periodic D-orbit, so we prove several lemmas about D-orbits
to answer this question.

Lemma 4.4 Let x be an eventually repeating 2-adic integer. Then

‖D(x)‖ =

{
‖x‖ if x is not half-flipped
1
2
‖x‖ if x is half-flipped

Proof. Let m = ‖x‖ and t = x, with x = x0x1 . . . xt−1xtxt+1 . . . xt+m−1 in reduced form.
Let x′ = St (x) = xtxt+1 . . . xt+m−1, so that for all i ∈ N, x′i = x′m+i, i.e. ‖x′‖ = ‖x‖ = m.
Note that since D is an endomorphism of S, St(D(x)) = D(St(x)) = D(x′), so ‖D(x)‖ =
‖St(D(x))‖ = ‖D(x′)‖. We proceed to find ‖D(x′)‖.

Let y = D(x′) and n = ‖D(x′)‖. For all i ∈ N, ym+i = |x′m+i−x′i+m+1| = |x′i−x′i+1| =
yi. Thus n divides m.

If x′ is half-flipped, then for all i, x′i = 1− xi+m/2, and yi+m/2 = |x′i+m/2− x′i+m/2+1| =
|1− x′i − (1− x′i+1)| = |x′i − x′i+1| = yi. Therefore

x′ is half-flipped⇒ n ≤ m

2
. (4.2)

Consider the case x′0 = 0. We have two cases: either x′n−1 = yn−1 or x′n−1 6= yn−1.
Case 1: Suppose x′n−1 = yn−1. Then by Lemma 4.1, x′n =

∣∣x′n−1 − yn−1

∣∣ = 0 = x′0.
This being our base case, we show by induction that for all i ∈ N, x′n+i = x′i. Let j ∈ N
and assume x′n+j = x′j. Then x′n+j+1 =

∣∣x′n+j − yn+j

∣∣ =
∣∣x′j − yj∣∣ = x′j+1, completing the

induction. We now have m | n and n | m, so n = m. Thus ‖D(x)‖ = ‖x‖. It follows from
(4.2) that x is not half-flipped, and the theorem holds in this case.
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Case 2: Suppose x′n−1 6= yn−1. Then by Lemma 4.1, x′n =
∣∣x′n−1 − yn−1

∣∣ = 1 = 1− x′0.
This being our base case, we show by induction that for all i ∈ N, x′n+i = 1 − x′i. Let
j ∈ N and assume x′n+j = 1 − x′j. Then x′n+j+1 =

∣∣x′n+j − yn+j

∣∣ =
∣∣1− x′j − yj∣∣ 6=

|xj − yj| = x′j+1, and therefore x′n+j+1 = 1− x′j+1, completing the induction. This implies
that m 6= n, and since n | m, we conclude that n ≤ 1

2
m. Also, for all i ∈ N, x′2n+i =

1 − x′n+i = 1 − (1 − x′i) = x′i. Therefore m ≤ 2n. Since n ≤ 1
2
m and 1

2
m ≤ n, we have

n = 1
2
m. Thus ‖D(x′)‖ = 1

2
‖x‖. Finally, making the substitution n = 1

2
m we have that

for all i ∈ N, x′m/2+i = 1− x′i, so x is half-flipped as well.
Hence the theorem holds for x′0 = 0. The proof for the case x′0 = 1 is analogous.

Lemma 4.5 Let x be an eventually repeating 2-adic integer. Then for all k ∈ N, Dk(x) =
x.

Proof. Let y = D(x), m = ‖x‖, and t = x, so that

x = x0x1 . . . xt−1xtxt+1 . . . xt+m−1

in reduced form. Then D(x) = y0y1 . . . yt−1ytyt+1 . . . yt+m−1, but not necessarily in reduced
form. We consider two cases: either x is half-flipped or x is not half-flipped.

Case 1: Suppose x is not half-flipped. By Lemma 4.4, ‖D(x)‖ = m. Also, by the
definition of t, xt−1 6= xt+m−1. Thus

yt−1 = |xt−1 − xt| 6= |xt+m−1 − xt+m| = yt+m−1

so y0y1 . . . yt−1ytyt+1 . . . yt+m−1 is in reduced form. We conclude that D(x) = t = x.

Case 2: Suppose x is half-flipped. By Lemma 4.4, ‖D(x)‖ = 1
2
m. It follows that

D(x) = y0y1 . . . yt−1ytyt+1 . . . yt+m/2−1. By the definition of half-flipped and t, xt+m/2−1 =
1− xt+m−1 = xt−1 and xt+m/2 = 1− xt. Therefore

yt−1 = |xt−1 − xt|
=

∣∣xt+m/2−1 − (1− xt+m/2)
∣∣

6=
∣∣xt+m/2−1 − xt+m/2

∣∣
= yt+m/2−1

so y0y1 . . . yt−1ytyt+1 . . . yt+m/2−1 is in reduced form. We conclude that D(x) = t = x.
Therefore, D(x) = x for all x ∈ Z2. It follows by induction that for all k ∈ N,

Dk(x) = x.

We are now ready to classify all 2-adic integers which are eventually D-periodic.

Theorem 4.6 Let x ∈ Z2. Then x is eventually D-periodic if and only if it is eventually
S-periodic, i.e. its 2-adic binary representation is eventually repeating.

Proof. Assume that the 2-adic binary representation of x is eventually repeating (so
that x is eventually S-periodic), with x = x0x1 . . . xt−1xtxt+1 . . . xt+m−1 where t = x and
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m = ‖x‖. Let a be the greatest odd divisor of m, with m = a ·2b. Lemma 4.4 implies that
for any k, n ∈ N with k < n,

∥∥Dk(x)
∥∥ = a · 2b′ and ‖Dn(x)‖ = a · 2b′′ for some b′, b′′ ∈ N

with b ≥ b′ ≥ b′′. Hence the sequence
{

log2

(
1
a

∥∥Dk(x)
∥∥)}∞

k=0
is a non-increasing sequence

of nonnegative integers, and thus is eventually constant. Let β be the minimum value
of log2

(
1
a

∥∥Dk(x)
∥∥) over all k, so that there exists an N ∈ N such that for all n ≥ N,

‖Dn(x)‖ = a ·2β. Define c = a ·2β. For all n ≥ N , there are at most 2c possibilities for the
repeating digits of Dn(x), and by Lemma 4.5, there are at most 2x possibilities for the first
x digits of Dn(x). Thus there are at most 2c ·2x = 2c+x possibilities for the values of Dn(x)
for all n ≥ N . By the pigeonhole principle, two of DN(x), DN+1(x), . . . , DN+2c+x

(x) are
equal, and thus the D-orbit of x is eventually periodic. So if x is eventually repeating
then x is eventually D-periodic.

Now assume that the 2-adic representation of x is not eventually repeating, and assume
to the contrary that x is eventually D-periodic. Then P(x) is eventually repeating. So the
D-orbit of P(x) is eventually periodic, and thus P(P(x)) is eventually repeating as well.
But Theorem 4.2 implies P(P(x)) = x, and x is not eventually repeating by assumption.
This contradiction completes the proof.

Note that Theorem 4.6 is not a consequence of D being conjugate to S, for D =
PSP−1 = PSP implies that x is eventually periodic for D if and only if P(x) is eventually
periodic for S.

In the proof of Theorem 4.6, we found that the S-period length of elements in the
D-orbit of x is either divided by 2 or remains constant with each iteration, until the
orbit becomes periodic and the S-period length ‖x‖ stabilizes. However, the value of ‖x‖
at which it stabilizes may be even. For example, x = 100111 has the periodic D-orbit
100111, 101000, 111001, 001010, 011110, 100010, . . ..

4.2 Eventually Fixed Points

We now classify those 2-adic integers whose D-orbit contains a fixed point (0 or 1).

Lemma 4.7 Let n ∈ N and a = a0a1a2 . . . a2n−1 ∈ B2n. Then

d2n−1(a) =

(
2n−1∑
i=0

ai

)
mod 2

i.e. d2n−1(a) =

{
0 if a contains an even number of 1’s among its digits
1 otherwise

.

Proof. We proceed by induction on n. The base case, n = 0, is trivial since d20−1(1) =
d0(1) = 1 and d20−1(0) = d0(0) = 0.

Let n ∈ N and assume the assertion is true for n. Let a0a1a2 . . . a2n+1−1 ∈ B2n+1 , and
let b = a0a1a2 . . . a2n−1 and c = a2na2n+1 . . . a2n+1−1 be the first and second halves of a.
We now consider two cases.
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Case 1: Suppose
∑2n+1−1

i=0 ai ≡
1

0, i.e. a has an even number of 1’s among its digits.

We have (
2n−1∑
i=0

ai

)
+

(
2n+1−1∑
i=2n

ai

)
=

2n+1−1∑
i=0

ai ≡
1

0

and therefore
∑2n−1

i=0 ai ≡
1

∑2n+1−1
i=2n ai. By the inductive hypothesis, d2n−1(b) = d2n−1(c).

Let z0z1 . . . z2n be the digits of d2n−1(a). Note that z0 = d2n−1(b) and z2n = d2n−1(c), so
z0 = z2n . Now, consider all subsequences of z0z1 . . . z2n of length 2. Such a subsequence
zizi+1 is a switch if zi 6= zi+1. Clearly, the first and last digit will match if and only if
there are an even number of switches, so in this case there are an even number of switches
in z0z1 . . . z2n . Since each 1 in d(z0z1 . . . z2n) corresponds to a switch in z0z1 . . . z2n , there
are an even number of 1’s among the digits of d(z0z1 . . . z2n). By the definition of d,
d(z0z1 . . . z2n) ∈ B2n . Using the inductive hypothesis a second time, we have

d2n+1−1(a) = d2n−1(d(d2n−1(a)) = d2n−1(d(z0z1 . . . z2n)) = 0

and the induction is complete.

Case 2: Suppose
∑2n+1−1

i=0 ai ≡
1

1. By an argument similar to that of Case 1, we have

d2n+1−1(a) = 1 and the induction is complete.

Theorem 4.8 Let n ∈ N and a = a0a1a2 . . . a2n ∈ B2n+1. Then d2n
(a) = d(a0a2n).

Proof. Suppose d(a) has an even number of 1’s among its digits. As in the proof of
Lemma 4.7, we know there are an even number of switches in a, so a0 = a2n . But by
Lemma 4.7, d2n−1(d(a)) = 0 = d(a0a2n). Similarly, if d(a) has an odd number of 1’s
among its digits then a0 6= a2n , and d2n−1(d(a)) = 1 = d(a0a2n). Thus in all cases
d2n

(a) = d(a0a2n).
Theorem 4.8 gives us an easy method for computing large iterations of D without

computing each individual iteration. For example, if we wish to compute D8(x0x1x2 . . .),
we merely compute d(x0x8), d(x1x9), etc., which yields the digits of D8(x0x1x2 . . .) in one
step rather than eight. This technique is also of use in the proof of the following theorem,
which classifies the 2-adic integers whose D-orbit is eventually fixed.

Theorem 4.9 The D-orbit of x is eventually fixed if and only if the reduced form of x
is either x0x1 . . . x2n−1 (in which case it eventually maps to 0) or x0x1x2 . . . x2n (which
eventually maps to 1) for some n ∈ N.

Proof. We first show that the D-orbit of x contains 0 if and only if the reduced form of
x is x0x1 . . . x2n−1 for some n ∈ N. Assume the D-orbit of x eventually contains 0. Since
‖0‖ = 1, we know by Lemma 4.4 that ‖x‖ = 1 · 2n for some n ∈ N.

Now, assume to the contrary that x 6= 0. Then by Lemma 4.5, for all k ∈ N, Dk(x) =
x > 0. However, 0 = 0, so the D-orbit of x cannot eventually contain 0. We conclude
that our assumption was false and x = 0. Thus the reduced form of x is x0x1 . . . x2n−1 for
some n ∈ N.
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Assume x = x0x1 . . . x2n−1 in reduced form. Let y = D2n
(x). By Theorem 4.8 and

Lemma 3.5, we have for all i ∈ N, yi = d(xixi+2n). Since xi = xi+2n , yi = 0 for all i and
thus D2n

(x) = 0 = 0.
We now show that the D-orbit of x contains 1 if and only if the reduced form of x is

x0x1x2 . . . x2n for some n ∈ N. Since D is an endomorphism of S, we have S(Dj(x)) =
Dj(S(x)) for all j ∈ N. AssumeDk (x) = 1 for some k ∈ N. ThenDk(S(x)) = S(Dk(x)) =
S(1) = 0. By the above argument, S (x) = x1x2 . . . x2n in reduced form for some n ∈ N.
By the definition of S, x either has reduced form x0x1x2 . . . x2n−1 or x0x1x2 . . . x2n . By
Lemma 4.5, x = Dk(x) = 1 = 1, so x = x0x1x2 . . . x2n in reduced form.

Assume x = x0x1x2 . . . x2n in reduced form. By the above argument, D2n
(S(x)) =

D2n
(x1x2 . . . x2n) = 0. Therefore S(D2n

(x)) = 0 as well, so D2n
(x) is either 0 or 1 by the

definition of S. By Lemma 4.5, D2n
(x) = x = 1, so D2n

(x) = 1.

4.3 The D-Orbit of an Integer

Any nonnegative integer is eventually repeating (ending in 0), so all nonnegative integers
are eventually D-periodic by Theorem 4.6. Surprisingly, they all are purely periodic points
of D with minimum period 2n for some n ∈ N, as we now show.

Theorem 4.10 Let x be a nonnegative integer. Then x is a purely periodic point of D
with minimum period 2n being the smallest power of 2 that is at least as large as the
S-preperiod length of x, i.e. 2n ≥ x.

Proof. Let t = x. By Lemma 4.5, for any i ∈ N, Di (x) = t as well. Thus for all i ∈ N,

2t−1 ≤ Di (x) < 2t by the definition of 2-adic integer.
Let x0x1x2 . . . xt−10 be the 2-adic expansion of x, and y0y1 . . . yt−10 the 2-adic expan-

sion ofD2n
(x). Then by Theorem 4.8, we have that for all i ∈ N, yi = d2n

(xixi+1 . . . xi+2n) =
d(xixi+2n) = d(xi0) = xi. Thus D2n

(x) = x, and x is D-periodic with minimum period
dividing 2n. Note that if x is 0 or 1, 2n = 1, so 2n must be the minimum period of x in
both of these cases.

Assume that x > 1 and the minimum D-period of x is less than 2n. Since it divides
2n it must be 2k for some k ≤ n − 1. Also, since n is the smallest natural number such
that 2n ≥ t, we have 2n−1 < t, and thus 2k < t as well. Let z0z1 . . . zt−10 be the 2-adic
expansion of D2k

(x). Since t− 2k − 1 ≥ 0, we have zt−2k−1 = d2k
(xt−2k−1xt−2k . . . xt−1) =

d(xt−2k−1xt−1) = d(xt−2k−11) 6= xt−2k−1. Therefore D2k
(x) 6= x, and x is not D-periodic

with minimum period 2k. We conclude that the assumption was incorrect and thus 2n is
the minimum period of x.

Negative integers have a 2-adic expansion ending in 1. This is because for any x ∈ Z2,
−1 − x = V (x) by binary arithmetic, so −x = V (x) + 1. Therefore, if x is a positive
integer, −x is one more than V (x), which ends in 1. Notice that D of a negative integer
is a positive integer, so by Theorem 4.10, the D-orbit of a negative integer enters a cycle
of positive integers after one iteration.

These facts are consistent with the duality of P seen in Theorem 4.2. Given a 2-adic
integer x whose reduced form is x0x1 . . . x2n−1 or x0x1x2 . . . x2n , we have by Theorem 4.9
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that P(x) is an integer. Also, given a 2-adic integer x which is also an integer, we have
by Theorem 4.10 that P(x) has reduced form x0x1 . . . x2n−1 or x0x1x2 . . . x2n .

5 Applications to the 3x + 1 Conjecture

Recall that the 3x+ 1 conjecture states that the T -orbit of any positive integer contains
1, or equivalently, eventually enters the 1, 2 cycle.

Corollary 3.4 states that P is a conjugacy from D to S. Also, as stated in the introduc-
tion, Φ is a conjugacy from S to T . Since the composition of conjugacies is a conjugacy,
this implies that D, the endomorphism of S resembling a discrete derivative, is conjugate
to T , the famous 3x+ 1 function.

Theorem 5.1 The map R = Φ ◦ P is a conjugacy from D to T .

Thus T and D have the same dynamics, and hence to solve the 3x + 1 conjecture it
suffices to have an understanding of the dynamics of D and the correspondence R between
the orbits of D and those of T .

Having studied the dynamics of D in Section 4, we turn our attention to understanding
the correspondence R. Since 1, 2 and 2, 1 are the unique 2-cycles of the dynamical system
T : Z2 → Z2 and 3, 2 and 2, 3 are 2-cycles of D : Z2 → Z2, these 2-cycles of D must
be unique. Thus, since R preserves parity, R(3) = 1 and R(2) = 2. Similarly, R(0) = 0
and R(1) = −1 since they are fixed points of corresponding parity of the two dynamical
systems.

By an argument similar to the proof of Theorem 4.9, the D-orbit of a 2-adic integer x
eventually enters the 3, 2 cycle (or, equivalently, the 2, 3 cycle) if and only if x has reduced
form x0x1x2x3 . . . x2n+1 for some n ∈ N. However, since an element x in the dynamical
system T : Z2 → Z2 eventually enters the 1, 2 cycle if and only if the D-orbit of R−1(x)
eventually enters the 3, 2 cycle, we have the following equivalence theorem.

Theorem 5.2 The following statements are equivalent:
1) The 3x+ 1 conjecture is true.
2) For all positive integers m, R−1(m) has reduced form x0x1x2x3 . . . x2n+1 for some

n ∈ N.

Thus it suffices to determine R−1 on positive integers in order to solve the 3x + 1
conjecture. In particular, it would suffice to find a tractable formula for R−1(m) for
positive integers m.

There is yet another way that D can be of use in solving the 3x + 1 conjecture, and
that is in its role as an endomorphism of the shift map.

Recall that Monks and Yazinski [6] defined Ω = Φ ◦ V ◦ Φ−1, and showed that Ω is
the unique nontrivial continuous autoconjugacy of T and that Ω2 = I. They also defined
an equivalence relation ∼ on Z2 by x ∼ y ⇔ (x = y or x = Ω(y)). This induces a
set of equivalence classes Z2/∼= {{x,Ω(x)} | x ∈ Z2}, and note that each equivalence
class in Z2/∼ consists of two elements of opposite parity. This enables one to define a
parity-neutral map Ψ as follows.
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Definition 7 The parity-neutral 3x + 1 map Ψ : Z2/∼→ Z2/∼ is the map given by
Ψ({x,Ω(x)}) = {T (x),Ω(T (x))}.

Monks and Yazinski also showed that the 3x+ 1 conjecture is equivalent to the claim
that the Ψ-orbit of any X ∈ Z2/∼ contains {1, 2}.

Making use of the endomorphism D, the following theorem improves upon this result.

Theorem 5.3 The dynamical system T : Z2 → Z2 is conjugate to Ψ : Z2/∼→ Z2/∼.

Proof. Define H = Φ ◦D ◦Φ−1. Since D is an endomorphism of S and Φ is a conjugacy
from S to T , H is an endomorphism of T . Recall that H induces the quotient set QH

discussed in Section 4. We now show that QH = Z2/∼. By Theorem 4.3, D ◦ V = D, so

H ◦ Ω = (Φ ◦D ◦ Φ−1) ◦ (Φ ◦ V ◦ Φ−1)

= Φ ◦D ◦ V ◦ Φ−1

= Φ ◦D ◦ Φ−1

= H

Thus for all x ∈ Z2, H(x) = H(Ω(x)), so {x,Ω(x)} is a subset of the equivalence class of
x in QH .

To see that these are the only elements in the equivalence class of x, let y ∈ Z2

and assume y 6= x and H(y) = H(x). Then Φ (D (Φ−1(x))) = Φ(D(Φ−1(y))), and since
Φ and Φ−1 are bijections, Φ−1(x) 6= Φ−1(y) and D(Φ−1(x)) = D(Φ−1(y)). Therefore
Φ−1(x) = V (Φ−1(y)) by Theorem 4.3. Thus x = Φ ◦ V ◦ Φ−1(y) = Ω(y). Therefore,
QH = Z2/∼.

Now define G : Z2/∼→ Z2 by G({x,Ω(x)}) = H(x) = H(Ω(x)). By the definition of
QH , G is injective. Also, since D is surjective and Φ and Φ−1 are bijective, H is surjective
as well, and therefore G is surjective. Thus G is a bijection. Finally, for any x ∈ Z2,

G(Ψ({x,Ω(x)})) = G({T (x), T (Ω(x))})
= G({T (x),Ω(T (x))})
= H(T (x))

= T (H(x))

= T (G({x,Ω(x)}))

and therefore G ◦Ψ = T ◦G.O So G is a conjugacy from Ψ to T .
This theorem is fascinating, for it proves that the parity-neutral function Ψ is conjugate

to, and thus has the same dynamical structure as, the function T defined piecewise on
even and odd 2-adic integers.

6 Conclusion

We have discovered an interesting finite subset of the set of all continuous endomorphisms
of S in that D, V ◦D, S, and V ◦S are the only such maps whose parity vector functions

16



are solenoidal. In addition, each of these four maps are conjugate to S when viewed
as dynamical systems on Z2, and we have seen that the “discrete derivative” D has
fascinating dynamics. In particular, we have proven that x is eventually D-periodic if and
only if it is eventually repeating, and have classified all eventually fixed points (Theorem
4.9) and the D-orbits of integers (Theorem 4.10) as well. We have observed that D
exhibits remarkable symmetry in that QD = {{x, V (x)} | x ∈ Z2} and that P is an
involution. Given that D has such rich structure, it would be of interest to study the
dynamics of other continuous endomorphisms of S and their applications as an area of
future research.

We have also seen that the map D has applications to other branches of mathematics.
Using Lagarias’s result that S is conjugate to T , we have demonstrated that D is conjugate
to T via R, and thus that to prove the 3x + 1 conjecture, it suffices to show that for all
positive integers m, R−1(m) has reduced form x0x1x2x3 . . . x2n+1 for some n ∈ N. Using
D, we have also constructed a conjugacy G between T and the parity-neutral function Ψ.
Hence, our results open the door to future research on the conjugacies R and G, motivated
by the possibility of making progress on the 3x+ 1 conjecture.
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